
THE PREPARATION OF

PROGRAMS

FOR AN ELECTRONIC

DIGITAL COMPUTER

A
 g

e
n

e
ra

l
v

ie
w

 o
f

th
e

E
D

S
A

C
.

T
h

e
ra

c
k

s
in

 t
h

e
fr

on
t

ro
w

 c
o

n
ta

in
 (

fr
o

m
 l

ef
t

to
 r

ig
h

t)
:

pa
rt

 o
f

th
e

s
to

re
 (

tw
o

r a
c

ks
),

 p
ul

se
 g

en
e

ra
to

r,
 a

nd
 i

n
p

u
t-

ou
tp

ut
 u

ni
ts

.
B

eh
in

d
a

re
 t

h
re

e
ra

c
ks

co

n
ta

in
in

g
th

e
co

nt
ro

l,

a
nd

,
in

 t
h

e
re

a
r

,
th

e
re

m
a

in
d

e
r

of
 t

h
e

st
or

e
(t

w
o

ra
c

k
s)

 a
n

d
th

e
a

ri
th

m
et

ic
a

l
un

it
 (

th
re

e
ra

c
k

s
).

O

n
th

e
ex

tr
em

e
ri

gh
t

of
 t

h
e

ph
ot

og
ra

ph
 m

ay
 b

e
se

en
 t

he
 t

a
pe

re
ad

er
 f

o
r

th
e

in
pu

t
ta

pe
,

a
nd

 t
h

e
te

le
p

ri
n

te
r

o
n

w
hi

ch

re
su

lt
s

a
re

 p
ri

n
te

d.

T
he

 l
ib

ra
ry

 o
f

ta
p

es
 o

n
w

hi
ch

 s
u

b
ro

u
ti

n
es

 a
re

 p
un

ch
ed

 i
s

co
n

ta
in

ed
 i

n
th

e
st

ee
l

ca
b

in
et

 s
ho

w
n

on
 t

he

le
ft

.
T

he
 o

p
er

at
o

r
is

 p
un

ch
in

g
a

p
ro

g
ra

m
 t

ap
e

on
 k

ey
b

o
ar

d
 p

er
fo

ra
to

r.

S
he

 c
an

 c
op

y
m

ec
h

an
ic

al
ly

 t
ap

es

ta
k

en
 f

ro
m

 t
h

e
li

b
ra

ry
 o

n
to

 t
h

e
ta

p
e

sh
e

is
 p

re
p

ar
in

g
 b

y
p

la
ci

n
g

 t
h

em
 i

n
th

e
ta

p
er

ea
d

er
 s

ho
w

n
in

 t
h

e
ce

n
te

r
of

 t
he

 p
ho

to
gr

ap
h.

ERRATA LIST

Page Line For Read

6 5 *L F *L D

7 15 will by will be

16 8 10
-1/2

 11

17 9 x.n
-4
 x.2

-4

23 Last Delete repetition

24 14 E m+3 θ E m+3 F

32 16 ref. 12 ref. 11

33 1 further a further

49 12 P K T 96 K P K T 250 K

 and follow on next line by

 G K T 47 K P 72 F T Z

 13 96 250

 20 G 96 F G 250 F

61 31 In integral, for -x read x

95 9 C(0D) C(0)

 12-16 p m (6 times)

 (p is correct for lines 6 and 10)

148 3½ from bottom n+2 p+2

157 3, 5, 7 m p

160 5 from bottom pseudo pseudo

Compiled by Scientific Computing Service

THE PREPARATION OF

PROGRAMS

FOR AN ELECTRONIC

DIGITAL COMPUTER

With special reference to
theEDSAC

and the use of a
library of subroutines

by

MAURICE V. WILKES

Director of the Mathematical Laboratory of the
University of Cambridge

DAVID J. WHEELER

and
STANLEY GILL

ADDISON-WESLEY PRESS, INC.
CAMBRIDGE 42, MASS.

Copyright 1951

ADDISON-WESLEY PRESS, INC.

Printed in ihe United Stales of America

ALL RIGHTS RESERVED. THIS BOOK, OR PARTS THERE­

OF, MAY NOT BE REPRODUCED IN ANY FORM WITHOUT

WRITTEN PERMISSION OF THE PUBLISHERS.

Martin Campbell-Kelly
Sticky Note
In a letter dated August 24, 1981, Addison-Wesley stated that the copyright of this edition of Wilkes, Wheeler and Gill "has expired, and the copyright is in the open domain."

TABLE OF CONTENTS

PART I

CHAPTER 1. THE DESIGN OF PROGRAMS FOR ELECTRONIC
COMPUTING MACHINES.

1-1 Introduction
1-2 Types of automatic computing machines .
1-3 Description of the EDSAC
1-4 The EDSAC order code
1-5 Notes on the order code ...
1-6 The use of conditional orders
1-7 Modification of orders by the program.
1-8 Multiaddress codes . • . . .
1-9 Binary-decimal conversion.

1-10 Checking facilities ...•

CHAPTER 2. INPUT OF ORDERS

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8

Initial orders .
Pseudo-orders •...
Examples .•..•.•
Control combinations •
Starting the prog.-am
Use of t.ude letters
Constants
Notation

CHAPTER 3. SUBROUTINES AND PARAMETERS.

3-1 Open subroutines •
3-2 Closed subroutines .•
3-3 Preset parameters ..
3-4 Program parameters •

CHAPTER 4. LIDRARY SUBROUTINES AND THEIR USE IN
CONSTRUCTING PROGRAMS

4-1 Library catalog•
4-2 Input and output subroutines .•.•
4-3 Division subroutines•...
4-4 Trigonometrical and other functions .
4-5 Quadrature • . . . •
4-6 Assembly subroutines •.•.....
4-7 Integration of differential equations .
4-8 Processes. Interpretive subroutines

1

1
2
3
5
6
7
8

11
12
14

15

15
17
17
17
18
19
20
20

22

22
22
23
23

25

25
25
26
27
27
27
32
34

CHAPTER 5. PITFALLS•...•....

5-1 Proofreading of programs. Points to be checked
5-2 Location of mistakes in a program
5-3 Counting operations •

CHAPTER 6. USE OF THE ED SAC AND ITS ASSOCIATED
EQUIPMENT

6-1 Tape punching and editing facilities.
6-2 Storage of library subroutines
6-3 EDSAC organization •
6-4 EDSAC controls .

38

38
39
41

42

42
43
43
43

CHAPTER 7. EXAMPLES 45

7-1 Example 1. Calculation of e-s inx. 45
7-2 Example 2. Calculation of 1r by evaluation of definite integral 48
7-3 Alternative method for Example 2 51
7-4 Example 2, with extra print orders for checking . . • . . . 53
7-5 Application of checking subroutine Cll to Example 2 . . . 54
7-6 Example of integration of an ordinary differential equation 56
7-7 Evaluation of a definite integral. • 61
7-8 Program to facilitate the solution of algebraic equations 66

PART II SPECIFICATIONS OF LIDRARY SUBROUTINES . 72

A. Subroutines to carry out floating point arithmetic • . 73
B. Subroutines to carry out arithmetical operations on complex

numbers. • . • . • • • 78
C. Checking subroutines . . 79
D. Division subroutines • . 82
E. Exponential subroutines 83
F. General routines relating to functions 84
G. Subroutines for integration of ordinary differential equations . 86
J . Subroutines for calculating special functions . 88
K. Subroutines for the summation of power series 88
L. Subroutines for evaluating logarithms 91
M. Miscellaneous subroutines 91
P. Print subroutines . . . • 92
Q. Quadrature subroutines. . 95
R. Input subroutines . • . . . 96
S. Subroutines for evaluation of fractional powers 98
T. Subroutines for calculating trigonometrical functions . 99
U. Subroutines for counting operations • . • 101

Vl. Multiplication of vector by symmetric matrix . . . 102
V2. Addition and subtraction of n dimensional vectors 103

PART III PROGRAMS OF SELECTED LIBRARY SUBROUTINES . . 104

APPENDIX A Keyboard perforator code, etc ..

APPENDIX B The initial orders ..

APPENDIX C Control combinations

158

159

161

APPENDIX D Interpretive subroutines: example of packing of orders. 162

APPENDIX E Methods of counting in a simple cycle 164

INDEX

PREFACE

The methods of preparing programs for the EDSAC described in this book
were developed with a view to reducing to a minimum the amount of labcr re­
quired, and hence of making it feasible to use the machine for problems which
require only a few hours of computing time as well as for those which require
many hours . This necessitated the establishment of a library of subroutines
and the development of systematic methods for constructing programs with
their aid. The methods are described in terms of the code of orders used in
the EDSAC, but for the main part they may readily be translated into other
order codes. It is hoped, therefore, that those who have charge of similar
machines, or who are faced with the task of putting a new machine into opera­
tion, will find some of the ideas and methods presented here of assistance . It
is hoped also that the book will be of use to those who wish to know something
about the form in which problems are presented to an automatic digital calcu­
lating machine and who wish to assess the possibilities of the application of
such machines to their own subjects.

Many work-ars in the Mathematical Laboratory have contributed to the de­
velopment of the methods described in this book. We would mention especially
the following: J. M. Bennett (to whom the material described in Appendix D is
due), R. A. Brooker, E . N. Mutch, B. Noble, J. P. Stanley, ancl B. H. Worsley.
To this list we would add the name of Professor D. R. Hartree, F .R.S. who has
also very kindly contributed a foreword to this book. The following also assisted
in the formation of the library of subroutines: K. N. Dodd, L. A. G. Dresel,
A. E. Glennie, E. E. C. McKee, and C. M. Munford. We are especially grate­
ful to Mr. Mutch for his assistance with the editorial work , in particular for
undertaking the heavy task of preparing Parts II and III for the press.

We are deeply conscious of the debt we owe to our colleagues engaged on
other projects, especially to those who were instructors of a course attended
by one of us at .the Moore School of Electrical Engineering, University of Penn­
sylvania, in 1946, and to Dr. J. von Neumann and Dr. H. H. Goldstine of the
Institute for Advanced Study, Princeton, whose privately circulated reports we
have been privileged to see.

We would als0 like to express our gratitude to Dr . Z. Kopal for the help
he has freely given in proofreading and in seeing the book through the press.
We are most grateful to the publishers and their staff for the care that they
have taken and for the rapidity with which they have done their work.

Cambridge, England
March, 1951

M. V.W.
D. J. W.

S. G.

FOREWORD

by Professor D. R. Hartree, Ph.D., F.R.S.

To the potential user of an automatic digital calculating machine, the suc­
cessful design and construction of the machine itself is only a first step, though
certainly an essential one. In order that the machine should in practice be use­
ful to him in the calculations he may desire to carry out with its aid, the pro­
vision of an adequate organization for using the machine is as important as the
machine itself.

One form of such an organization is based on a library of subroutines for
carrying out standard processes, and facilities for using it. Provision of s uch
a library has two important effects. First, it relieves the user of the machine
of the greater part of the work of programming calculations in detail ; a library
subroutine can be incorporated as a unit in his program, without it being neces­
sary for him to work through the sequence of operations by which the calculation
carried out by the subroutine is effected; and it is quite possible for eighty per­
cent of a complete program to be carried out by the use of such libra ry subrou­
tines. And secondly, in making up a program, use of library subroutines which
have been thoroughly checked limits the possibilities of mistakes in program­
ming, and correspondingly reduces the expenditure of time, both of the machine
and of the programmer, in diagnosing and correcting mistakes. In order that
such a library of subroutines should be practically useful, it seems des irable,
if not indeed necessary, that the subroutines s hould be drawn up in a form which
provides a certain amount of flexibility in their use, so that slight variations
can be made in them in order to suit the contexts in which they may be used in
particular applications.

The process of building up such a library of subroutines, and testing its
value by practical use, appears to have proceeded further at the Mathematical
Laboratory of the University of Cambridge than elsewhere, and in this book
the authors, who together have been primarily concerned in this development ,
give an account of the present state of this aspect of the study of means of using
an automatic calculating machine effectively. It is the result of a considerable
amount of exploratory work on such matters as ways in which to specify operat­
ing instructions to the machine, a nd to draw up s ubroutines , so as to give the
required flexibility, ways in which to enter and leave subroutines, and different
types of subroutines.

The results of this work do not provide a unique system, nor are they to be
regarded as forming a perfect one; they depend on the order code and other
features of the functional design of a machine which were decided already two
years ago, before some of the developments in programming had been envisaged.
But that it is a practical and useful system has been tested by experience; it
divests programming of the appearance of being something of a magic art,
closed except to a few specialists, and ma kes it an activity s imple enough to be
undertaken by the potential user who has not the opportunity to give his whole
time to the s ubject.

The subject is one which is still developing, but the authors are, I think, to
be commended for drawing up this account of the present stage of their contri­
bution to it, both in general ideas and in details, and so making this work avail­
able to others working in this same field .

Cavendish Laboratory
Cambridge, England

January, 1951

D. R. Hartree

PART I

CHAPTER 1

THE DESIGN OF PROGRAMS

FOR ELECTRONIC COMPUTING MACHINES

1-1 Introduction.

A digital computing machine can perform only the basic operations of
arithmetic, namely, addition, subtraction, multiplication, and division. In
order to be able to solve a mathematical problem such as the integration of
a differential equation it is first necessary to express the problem as a se­
quence of such operations. This may call merely for some expenditure of
labor or it may involve considerable mathematical manipulation; for example,
where derivatives or integrals are involved it may be necessary to replace
the continuous variables by variables which change in discrete steps.

If the computation were to be performed by a human computer it would
be possible to communicate the problem to him in a series of instructions or
orders, each specifying an elementary arithmetical operation. It is conven­
ient to use the same nomenclature when speaking of a machine but here the
"instructions," or "orders," are groups of symbols punched on a paper tape
or prepared in some other form which can be fed into a machine. A sequence
of orders for performing some particular calculation is called the program.
It must contain everything necessary to cause the machine to perform the re­
quired calculations and every contingency must be foreseen. A human com­
puter is capable of reasonable extension of his instructions when faced with
a situation which has not been fully envisaged in advance, and he will have
past experience to guide him. This is not the case with a machine.

Since an automatic computing machine can perform only a very limited
number of basic operations, the simplest mathematical calculation requires
an extended sequence of orders. The labor of drawing up a program for a par­
ticular problem is often reduced if short, ready-made programs for perform­
ing the more common computing operations are available. These short pro­
grams are usually called subroutines, and they may be incorporated as they
stand in the program, thus reducing the amount of work which has to be done
ab initio. If it is intended that an electronic computing machine shall be used
on a wide variety of problems it is worth-while to spend much effort on the
establishment of an extensive library of such subroutines, together with a work­
able system whereby selected subroutines may be combined to form a program.

This book contains a detailed description of the library of subroutines
used in the Mathematical Laboratory of the University of Cambridge in con­
junction with the EDSAC (Electronic Delay Storage Automatic Calculator) and
of the way in which programs can be constructed with its aid. There will be
some discussion of the best way to construct subroutines for numerical quad­
rature, the integration of differential equations, and other processes, but the
more theoretical problems that arise in numerical analysis are outside the
scope of this book. Some of these, for instance those concerned with the con­
vergence of iterative processes and with the accumulation of rounding-off

1

2 ELECTRONIC DIGITAL COMPUTER

errors, are of great importance and interest and are likely to arise in acute
form when planning the large-scale computing operations which an electronic
machine makes possible. The present book, however, is concerned with the
steps which must be taken to make the machine perform the numerical proc­
esses necessary to solve a problem when once it has been decided what those
processes are.

There are naturally many ways, all similar in principle but differing in
detail, in which subroutines may be used to construct programs, and no attempt
will be made here to discuss all the possible alternative methods. It is hoped,
however, that the account given of those at present being used with the ED SAC
will be of general interest. The ideas and techniques described are applicable,
with suitable adaptation, to other electronic calculating machines designed on
the same general principles.

1-2 Types of automatic computing machines.

In large automatic computing machines which depend for their action on
electromechanical devices the orders are usually punched in coded form on
paper tape, one group of holes corresponding to each order. These holes are
read by a sensing device and cause the machine to perform the operation
called for; the tape is then advanced so that the next group of holes is under
the reading head and the next order is similarly executed. In addition to a
sensing mechanism for the main prograaa tape, several other sensing mechan­
isms are usually provided. These can be used to read endless loops of tape
which contain orders for performing parts of the program which have to be
repeated a number of times. Control of the machine is passed from one tape
to another as required. Machines which work in this manner are the Automatic
Sequence Controlled Calculator at Harvard University, relay calculators built
by the Bell Telephone Laboratories, the Aiken relay computer at Dahlgren, Md.,
and the IBM Selective Sequence Electronic Calculator.

Such a system, while admirable for controlling a relay machine, would
not be fast enough for a machine in which the computation is performed by elec­
tronic means and in which it is desired to realize the very high speed which
this makes possible. The ENIAC, which was the first purely electronic ma­
chine to be built, therefore used a system in which the various steps of the
program were initiated by "program pulses" passed from one unit of the ma­
chine to another. For example, to cause a number standing in one register or
"accumulator" to be added to the number standing in another accumulator,
both accumulators needed to be stimulated by a program pulse, one to trans­
mit and onf' to receive. When the operation was finished both accumulators
emitted a pulse, and one of these (it did not matter which, since they both
occurred at the same time) was used to stimulate the next action. Putting a
problem on the machine consisted, therefore, of making a large number of
connections by means of plugs and sockets and setting a number of switches.
The main objection to this system is that it takes some time to change over
from one problem to another. In all later machines, proposed or completed,
the orders are expressed in a coded form and placed in advance in a quick­
access store, or memory, frQm which they are subsequently taken and executed
one by one. The orders are usually passed into the machine by means of a

DESIGN OF PROGRAMS

punched tape, or some similar medium, but this is used simply as an inter­
mediary in the process of transferring the program to the store, and does
not control the computing action of the machine directly.

A store, or memory, is needed in automatic computing machines for

3

the purpose of holding numbers, and in the EDSAC the same store is used to
hold the orders; this is made possible by the device of expressing the orders
in a numerical code. Several machines working on the same principles as the
EDSAC are now in operation in the United States and in England. These prin­
ciples derive from a report drafted by J. von Neumann in 1946 in connection
with a new machine (the EDVAC) then projected by the Moore School of Elec­
trical Engineering (University of Pennsylvania) where the ENIAC had been
built. It is found that machines designed along the lines laid down in this re­
port are much smaller and simpler than the ENIAC and af the same time more
powerful. The methods by which programs are prepared for all these machines
are, as might be expected, similar, although the details vary according to the
different order codes used. Anyone familiar with the use of one machine will
have no difficulty in adapting himself to another. All machines so far com­
pleted use the binary system for internal calculations but this is not an essen­
tial feature and several machines under construction use the decimal system.
Even if the binary scale is used inside the machine, it is only rarely that the
programmer needs to take notice of this fact, since input and output can be
performed in the scale of ten, the necessary conversion being done by the
machine it~elf as part of the progra~.

1-3 Description of the EDSAC.

In order to be able to construct programs, some knowledge of the main
units of the machine and their interconnection is required, although it is not
necessary to understand the precise mode of functioning of the various elec­
tronic circuits. There are, from the point of view of the programmer, four
main parts to the machine: the store, or memory, the arithmetical unit, the
input, and the outp.ut mechanisms. There is also the control unit which emits
the electrical signals that control the action of the other units. Fig. 1 shows
the connections between the various units. The store of the EDSAC, which is
of the ultrasonic variety, was designPd to have capacity for 1024 numbers of
17 binary digits each, although so far only half this capacity has been available.
Negative numbers are represented inside the machine by their true comple­
ments and the most significant digit of any number is treated in the arithmeti­
cal unit as a sign digit. The sign digit is a zero if the number is positive and
a one if it is.negative. The 512 numbers are held in 512 "storage locations"
numbered serially from 0 to 511 for reference purposes. The reference num­
ber of the storage location holding a number x is sometimes called the address
of x. A special feature of the EDSAC is the possibility of combining any two
consecutive storage locations (provided that the first has an even serial num­
ber) into a single long storage location capable of holding a number with 35
binary digits, one of which is a sign digit. Such a number is called a "long
number" to distinguish it from a "short number" of 17· binary digits. It is
possible to accommodate 35 digits in a long storage location, and not 34 only,
since in the ultrasonic store of the EDSAC the digits of successive numbers
are stored end to end and one digital position between each is left unused;

4 ELECTRONIC DIGITAL COMPUTER

STORE

...._

·~

I
"'

CONTROL

I ' '
I ' '
' '

' ' '
I

' ' '

ARITHMETICAL
UNIT

ACCUMUL ATOR

INPUT

OUTPUT

f

' '

' '
' '
0 I

I o

' '
' I

o I

' I

_ _,

~-- .J

Fig. 1 Schematic diagram of the EDSAC

when two storage locations
are combined this position
can be used to contain an
extra digit (sometimes
called the "sandwich"
digit). It may be noted
that a long number con­
tains the equivalent of
about ten decimals and a
short number the equiva­
lent of about five decimals.

The arithmetical unit
may best be described as
being an electronic ver­
sion of an ordinary desk­
type calculating machine.
In it the operations of
addition, subtraction, and
multiplication may be per­
formed; there is no divider
in the EDSAC and the
means used for perform­
ing division will be de­
scribed later. The arith­
metical unit contains an
accumulator register, in
which the results of addi­
tions, subtractions, and
multiplications appear
and in which a series of

such results may be accumulated, There is another register which is used
to hold the multiplier during the process of multiplication. The multiplier is
so constructed that numbers are treated as though they lie in the range
-l~x<l, that is, the binary point is assumed to come immediately to the
right of the sign digit. The programmer should, therefore, rearrange the
formulas before drawing up the program, so that all the quantities which
need to be handled inside the machine are within the range -l~x<l. This
may always be done if suitable positive or negative powers of two are intro­
duced as multiplying constants; in the program these constants are repre­
sented by shift orders. An alternative procedure, although not one to be
generally r~commended, is for the programmer to adopt some other conven­
tion as to the position of the binary point and to program a shift after each
multiplication; for example, if the binary point is assumed to be between the
second and third digits to the right of the sign digit, e;,.ch multiplication must
be followed by a shift of 2 places to the left.

Five-hole punched tape, read by a photoelectric tape reader, is used
for input to the EDSAC. All the orders and numbers required for the solution
of a problem are punched on a single tape, which may, however, be divided
into two or more pieces for insertion in the tape reader one after the other.
Library subroutines are stored on separate short lengths of tape and copied

DESIGN OF PROGRAMS 5

mechanically on to the program tape. The output mechanism is a teleprinter.
Further information about the engineering of the EDSAC will be found in the
papers listed on page 21.

1-4 The EDSAC order code.

The action of the machine proceeds in two stages; in stage I an order
passes from the store into the control unit; in stage II the order is executed.
The machine then proceeds automatically to repeat stage I, in general taking
the order from the storage location following that containing the order just
executed. An exception to this rule will be discussed in Section 1-6. Each
order calls for one simple operation to be performed; for example, it may
cause some number to be extracted from the store and added to whatever
happens to be in the accumulator, the sum being left in the accumulator, or
it may cause the contents of the accumulator to be transferred to the store.
Some orders, for example left or right shift orders, do not involve the use of
the store at all.

There are in the EDSAC code eighteen orders from which the program­
mer can build up his program. They are written in the form of a letter indicat­
ing the function of the order, and a number (the address) specifying the location
(if any) in the store concerned. The address is followed by the code letter F if
it refers to a short storage location, and by the code letter D if it refers to a
long storage location. The full order code for the EDSAC is as follows:

Order Code

Where the code letter terminating an order is not shown it may be either F
or D.

An
S n

Hn

Vn

Nn

Tn

Un

Cn

*R D

Add the number in storage location n into the accumulator.
Subtract the number in storage location n from the

accumulator.
Copy the number in storage location n into the multiplier

register.
Multiply the number in storage location n by the number

in the multiplier register and add the product into the
accumulator.

Multiply the number in storage location n by the number
in the multiplier register and subtract the product from
the accumulator.

Transfer the contents of the accumulator to storage loca­
tion n and clear the accumulator.

Transfer the contents of the accumulator to storage loca­
tion n and do not clear the accumulator.

Collate the number in storage location n with the number
in the multiplier register and add the result into the
accumulator; that is, add a "1" into the accumulator
in digital positions where both numbers have a "1",
and add a "0" in other digital positions.

Shift the number in the accumulator one place to the
right; that is, multiply it by 2- 1 •

6

**R 2P-2

RF

*L F

HL 2p-2

LF

EnF

GnF

I n

On

Fn

*x
*y

*z

F

F

ELECTRONIC DIGITAL COMPUTER

Shift the number in the accumulator p places to the right;
that is, multiply it by 2-P (2~~12).

Shift the number in the accumulator 15 places to the right;
that is, multiply it by 2- 15

Shift the number in the accumulator one place to the left;
that is, multiply by 2.

Shift the number in the accumulator p places to the left;
that is, multiply by 2P (2~p~12).

Shift the number in the accumulator 13 places to the left;
that is, multiply by 213 •

If the number in the accumulator is greater than or equal
to zero, execute next the order which stands in storage
location n; otherwise proceed serially.

If the number in the accumulator is less than zero, execute
next the order which stands in storage location n; other­
wise proceed serially.

Read the next row of holes on the input tape and place the
resulting integer, multiplied by 2-16, in storage location n.

Print the character now set up on the teleprinter and set
up on the teleprinter the character represented by the
five most significant digits in storage location n.

Place the five digits which represent the character now
set up on the teleprinter in the five most significant
places in storage location n, clearing the remainder of
this location.

Ineffective; machine proceeds to next order.
Round-off the number in the accumulator to 34 binary

digits; that is, add z-35 into the accumulator.
Stop the machine.

*The addresses in these orders need not be zero.
**The addresses in these orders may be k · 2P- 2 where k is odd, pro­

vided that the addresses do not exceed 2047.

1-5 Notes on the order code.

As a simple example of the use of this code, suppose that it is required
to evaluate the expression X+Y+xy, taking x and y to be the contents of the
short storage locations 50 and 51, and to place the result in the long storage
location 52. A program for doing this is as follows (it is assumed that the
accumulator is clear at the beginning) :

A 50 F
A 51 F
H 50 F
V 51 F
T 52 D

The a.ccumulator has sufficient capacity to hold a number having 71
binary digits, of which one is regarded as a sign digit. As in the store, the
binary point is immediately to the right of the sign digit. When two long num­
bers are multiplied together the resulting 69 digits are all available in the

DESIGN OF PROGRAMS 7

accumulator. A U order or a T order will, however, transfer only the 35 most
significant digits (or if the order is terminated by an F, the 17 most significant
digits) to the store, although a T order always clears the whole of the accumu­
lator. If it is desired to retain all the 69 digits which are obtaint;!d by multiply­
ing two long numbers together, then the 35 most significant digits must first
be transferred to the store by means of a U order and the contents of the ac­
cumulator shifted 34 places to the left; the 34 least significant digits are then
in a suitable position to be transferred to the store by a T order. Note that it
is necessary to use three left shift orders, since in the EDSAC the number in
the accumulator cannot be shifted more than 13 places to the left by a single
shift order.

If an A order is used to add a number x from the store to the number y
standing in the accumulator the correct answer will be obtained only if X+Y
satisfies the condition -1~x+y<1. If this condition is violated the number
appearing in the accumulator will by x+y-2 if X+YZl, and X+Y+2 if x+y<-1. In a
similar way, if the effect of any other order is to cause the capacity of the
accumulator to be exceeded, the number which actually appears in the accumu­
lator is that obtained by adding or subtracting a suitable multiple of 2 from
the correct result.

The C order (collation) is useful when it is required to pick out specified
groups of digits from a number. For example, the first four binary digits,
not including the sign digit, of a given number may be isolated by collating the
given number with the number 01111000000000000000000000000000000, that is,
15/16.

The number placed in the multiplier register by an H order remains
there until it is replaced by another number introduced by another H order.
Thus if a series of numbers are to be multiplied by a constant, one H order
only is necessary to transfer the constant to the multiplier register at the
beginning of the operation.

1-6 The use of conditional orders.

An exception to the rule that the machine executes orders in the sequence
in which they stand in the store occurs when a conditional order (E or G) is
encountered. The action then depends on the sign of the number in the accumu­
lator; if this is negative an E order causes the machine to pass straight on to
the next order, while if it is positive or zero the next order is taken from some
other location in the store. In the latter case control is said to be transferred
to the new storage location. The action of a G order is similar, except that
control is transferred if the number in the accumulator is negative. The fol­
lowing program for finding the absolute value of the number in storage location
123 illustrates the use of a conditional order.

Location
of order Order Notes

the accumulator is assumed to be clear at
the start

301 A 123 F the number in 123 is added into the accumu-
lator

302 E 305 F the sign is tested

8

303
304
305

T
s
T

ELECTRONIC DIGITAL COMPUTER

~}
F

if negative, the number in the accumulator
is changed in sign

the result is placed in location 0

Conditional orders, however, are much more important than this ex­
ample would indicate, since they enable the programmer to cause a group of
orders to be repeated a number of times and to transfer control from one
section of the program to another. Conditional orders thus provide facilities
equivalent to those obtained by the use of endless loops of tape on the machines
mentioned earlier. The following example shows how the operations called
for by the sequence of orders held in storage locations 100 to 109 may be re­
peated six times.

Method. A number in the store is arranged to have the values -5, -4,
... 0 units after the group of ordErs has been obeyed once, twice, ... six
times. Thus when this counting number becomes zero, the process has been
performed six times.

It is assumed that storage location 0 can be used to hold the counter,
and that storage locations 1 and 2 contain 6 · 2- 15 and 2- 15 respectively.

Location
of order Order Notes

the accumulator is assumed clear at the
start

97 s 1

~} places new value of counting number in 98 A 2 storage location 0 (initially -5 · 2-15)
99 T

100 } orders to be repeated. It is assumed that

109 they leave the accumulator empty

110 A F test whether the counting number is zero
111 G 98 F

In many cases it is not known in advance how many times the sequence
of orders mu~t be repeated. An example occurs in the calculation of a recip­
rocal root a-~ from the iterative formula Xn+1 = 1/2 xn(3-ax;;). The iteration
is to be started with a first approximation Xo and stopped when lx n_1 -xni<E.,
where £ is a positive quantity given in advance. This may be done by means
of a sequence of orders which, given the value of Xn in a certain storage loca­
tion, say m, calculates Xn+1 and transfers it to m, where it replaces Xn· In
addition, the quantity \x n+1-Xn\ - f.. is computed and left in the accumulator. If
this quantity is positive or zero, the next order, which is an E order, transfers
control back to the beginning of the sequence; otherwise control passes straight
on. If storage location m contained x0 before the sequence of orders was oper­
ated for the first time, this storage location will now contain a-~ .

1-7 Modification of orders by the program.

It has been explained that orders are expressed inside the machine in a
numerical code,•and that the numbers which represent them are held in the
same store as other numbers needed in the calculation. If a number which

DESIGN OF PROGRAMS 9

stands for an order is modified, for example by having a constant added to it,
it then stands for a different order, and if the section of the program contain­
ing it is operated twice, once before and once after the modification, different
operations will be performed. This facility of being able to modify the orders
in the program by performing arithmetical operations on the numbers repre­
senting them is of great importance, and it is perhaps the feature most charac­
teristic of program design for machines like the EDSAC. The operations re­
quired for this purpose are performed in the arithmetical unit in the same way
as other arithmetical operations.

Some examples of the use which can be made of this facility are given
below. It is first necessary, however, to explain the numerical code by which
orders are represented inside the ED SAC. The order X n. F (where X stands
for any letter in the order code) is represented by the number 2-4 x+2- 15 n,
where the value of x for the various orders is jiven in the table below. The
order X n D is represented by 2-4 X+2- 15 n+2- 1 •

x x
A -4
c -2
E 3
F -15
G -5
H -11
I 8
L -7
N -10
0 9
R 4
s 12
T 5
u 7
v -1
X -6
y 6
z 13

Thus A 50 F would be represented by the number 2-4 (-4)+2- 1~ • 50; this
may be converted into the number representing A 51 F by adding 2- 15 to it.

It is often convenient to drop the distinction between orders and the
numbers representing them, and to speak, for example, of " the order con­
tained in storage location n," and of orders being modified by having constants
added to them.

A sequence of orders designed to be repeated a number of times may
contain a group of orders which modify other orders in the same sequence.
Each time the sequence is operated it will then cause a different s et of calcu­
lations to be performed. In this way it is possible to use repetitive cycles to
perform calculations which do not at fir s t s ight appear to lend themselves to
such treatment. The advantage of doing this is that programs can often be
constructed with many fewer orders than would otherwise be necessary, and
therefore require less s pace in the store. As an example, suppose that the

10 ELECTRONIC DIGITAL COMPUTER

sum of the contents of storage locations 100, 101, .•. 149 is to be added to the
contents of storage location 5.

Method. The contents of storage location 100 are added to those of
storage location 5 by means of a group of orders containing the order A 100 F.
The address specified in this particular order is then increased by one, and
the group of orders repeated. Thus the contents of storage locations 100, 101,
... are added in succession to the contents of storage location 5. It is neces­
sary to terminate this process, and a counter is used as in the previous ex­
ample.

It is assumed that storage location 0 can be used to hold the counter,
and that storage locations 1 and 2 contain 50· 2- 15 and 2-15 respectively.

Location
of order Order Notes

200 s 1

~} 201 A 2 set counter (initially -49 · 2- 15)

202 T
203 A 100 F the address in this order is increased by one
204 A 5 F each time the cycle is repeated
205 T 5 F
206 A 203

~} increase by one the address specified in 207 A 2
208 T 203 order 203

209 A ;} test for end of process
210 G 201

This p:rogram may be shortened by using the variable order for count­
ing. It then appears as below. Storage location 1 contains the number equiva­
lent to the order A 150 F and storage location 2 contains 2- 15

Location
of order Order Notes

200 T F clears accumulator
201 A 5 !} add appropriate number to the contents of
202 A 100
203 T 5

storage location 5

204 A 202

~} increase the address specified in order 205 A 2
206 u 202

202 by one

207 s 1 ;} test if the order contained in location 202
208 G 200 has become A 150 F; if not, repeat the

process.

This example contains nine orders. If it were written out in full, that
is, if a repetitive cycle were not used, 52 orders would be necessary. A more
complete discussion of methods of counting will be found in Appendix F.

Occasionally, where there are very few repetitions, it is better to write
out the orders in full. This reduces the machine time taken by the process,
since no time is consumed in modifying orders or in counting the number of
repetitions, and this fact may be important if the whole process has to be

DESIGN OF PROGRAMS 11

performed a large number of times. Moreover, if the accumulator is not re­
quired for counting and for modifying orders, the program can often be further
shortened by making use of the facility of accumulating sums and products.
The total number of orders may even be fewer than if a cycle is used.

1-8 Multiaddress codes.

In the EDSAC order code each order has reference to, at the most, one
location in the store; it is thus described as a single-address code. Other
machines have multiaddress codes in which each order may refer to several
locations in the store. For example, one order in such a code might be'

A r s t add the number in storage location r to the num­
ber in storage location s and transfer the re-
sult to storage location t.

This is an example of a three-address code. One order in such a co~e takes
up more space in the store than an order in a single-address code (in the
EDSAC it would require a long storage location instead of a short one) but it
causes a more complicated set of operations to be carried out. Thus the
single order A r s t has the same effect as the group of orders A r, A s, T t
in the EDSAC order code, and requires one long storage location instead of
three short ones. However, use of a three-address code does not always
enable a similar saving to be made; for example, to add the four numbers in
storage locations r, s, p, and t together and to place the result in storage loca­
tion q the following three orders are required:

A r s q
A q p q
A q t q.

In the EDSAC order code the following group would be required:

A r
A s
A p
A t
T q

In this case the orders in the single-address code actually take less space
than those in the three-address code, the reason being that when using the
single-address code the programmer can take advantage of the fact that sums
can be accumulated in the accumulator . On the whole it is doubtful whether
more than a slight saving in the storage capacity reyuired to hold the orders
can be obtained by using a three-address code. Its 'lse does, however, enable
the speed of the machine to be increased slightly, si.1ce the number of orders
which have to be extracted from the store is reduced. On the other hand, the
complexity of the control section of the machine is increased.

From the point of view of the programmer there is very little to choose
between the convenience of using single- and three-address codes; in particu­
lar, counting operations can be performed and orders modified in a three­
address code by methods exactly analogous to those described in this chapter
for use with a single-address code. The decision as to whether a machine

12 ELECTRONIC DIGITAL COMPUTER

should have a single-address or a three-address code should rest rather with
the designer than with the prospective mathematical user.

In most machines the orders are executed, as in the EDSAC, in the
serial order in which they stand in the store, except when transfer of control
is brought about by the action of a transfer order . An alternative system is
to include in each order a specification of the location from which the next
order is to be taken. This leads to a four-address code in which three of the
addresses are used as in a three-address code and the fourth contains the
address of the next order to be executed. This has advantages in the case of
a machine which uses ultrasonic tanks (mercury memory) or a magnetic drum
for its main store. With either of these stores numbers are available only at
certain times in a fixed cycle. If a number or order is to be extracted from a
random location there will therefore be a delay, equal on the average to half
the circulation time in the case of the ultrasonic store and to half the rotation
time in the case of the magnetic drum. If, however, the programmer has con­
trol over the location from which the next order is to be obtained, he can re­
duce this delay by placing the orders and numbers as far as possible in loca­
tions chosen so that they become available at the moment they are required.
He is assisted in doing this if he is provided with a number of special storage
registers which have an access time short compared with that of the main store;
for example, a machine using an ultrasonic store may have a number of short
mercury tanks, each accommodating a single number in addition to the long
tanks of the main store, each of which holds 16 or 32 numbers. This procedure
is sometimes called optimum programming and the first machine to be specially
designed with a view to its adoption was the ACE (Automatic Computing Engine),
of which a pilot model is now working at the National Physical Laboratory at
Teddington, Middlesex, England. Optimum programming makes the work of
the programmer more complicated, because it introduces considerations con­
cerned with the timing of operations in the machine and thus confuses the es­
sentially uithmetical nature of programming as stressed in this book. How­
ever, a compromise can be reached if it is possible for the library subroutines
to be constructed in accordance with the principles of optimum programming
and for the programmer to construct the other parts of the program in the
ordinar y way. In this way a high proportion of the gain in speed made possible
by the use of optimum programming can be obtained without complicating the
task of the programmer unduly. It should be especially noted that the provi­
sion of a four-address code of the kind described here and its use in conjunc­
tion with optimum programming technique are devices for mitigating the funda­
mental disadvantages of a delay-type store, and are of no assistance if a store
of the electrostatic variety is used.

1-9 Binary-decimal conversion.

It has already been mentioned that conversion of numbers to and from
the binary system is performed by the machine. Full details of how this is
done may be found by examining the input and output subroutines in Part III
of this book; a general explanation of the principles used will be given in the
present section.

The paper tape used for input to the machine is prepared by means of
a keyboai d perforator. There are five positions across the tape in which
holes may or may not be punched and one row of holes may therefore be said

DESIGN OF PROGRAMS 13

to represent a five-digit binary number. The keyboard perforator has 32 keys,
labeled with combinations of letters, figures, and other symbols, as in the
case of an ordinary teleprinter keyboard. Each key causes one row of holes
to be punched on the tape according to the code given in Appendix A. The
corresponding five-digit binary numbers are also given in this Appendix.* It
will be seen that the figures from 0 to 9 are represented by their binary equiva­
lents. For example, 5 is represented by 00101, 6 by 00110, etc.

Suppose that it is required to put the number 0.21973 into the machine.
The successive digits of this number are punched in order on the input tape.
When the tape is read by the machine acting under the control of a succession
of I orders in the program, the binary equivalents of the following numbers
will be transferred to the store in succession:

2 X 2- 1 6

1 X 2- 16

9 X 2- 16

7 X 2-16

3 X 2- 16

The program contains orders which cause the first of these numbers to be
multiplied by 104 , the second by 103 , the third by 102 , the fourth by 10, the
last by 1, and the results to be added together. This calculation is carried
out in the binary scale so that the binary equivalent of 21973.2- 16 is now to
be found in the store. A further multiplication by 10-5 • 2 16 forms there­
quired number in its binary form. It will be seen that the decisive step in
the conversion of the number to the binary scale takes place in the keyboard
perforator, which converts the individual decimal digits of the number to
their binary form.

In drawing up the program for this conversion it is necessary to avoid
the use of numbers that lie outside the range -1:s;.x<l. For example, it is not
possible to multiply by 10 directly; instead, it is necessary to multiply by
10/16 and to shift the result four places to the left.

Conversion of binary numbers to their decimal form during output is
done in an analogous manner. The teleprinter accepts a five-digit binary num­
ber (actually the five most significant digits in the storage location specified
in the output order) and prints the corresponding character. Here again the
code is so chosen that the binary numbers from 0 to 9 are printed as the cor­
responding decimal figures; for example, 00101 is printed as 5, 00110 as 6, etc.
The program must therefore cause the successive decimal digits of the given
number to be calculated in their binary form; final conversion to decimal form
can then take place in the teleprinter.

The principle of the method used to obtain successive decimal digits is
to multiply the number (which is assumed to be positive and less than unity)
repeatedly by ten and to remove the integral part each time. If the number is
expressed as a decimal fraction this method clearly isolates the successive
digits, beginning with the most s ignificant. The same is true if the number is

*A hole in the tape represents the binary digit 1, except in the case of
the most significant digit, where a "1" is represented by the absence of a
hole. This is done in order to avoid having to represent the number 0 by
blank tape.

14 ELECTRONIC DIGITAL COMPUTER

expressed as a binary fraction (the multiplication being by ten in its binary
form, that is, by the binary number 1010), except that the digits are then ob­
tained in the form of the corresponding binary numbers. When this method
is programmed for the EDSAC it is necessary, in order to avoid using num­
bers outside the range -1s;:x<1, to multiply by 10/16 instead of by 10 and to
take the four digits which come immediately after the binary point. The re­
mainder is shifted four places to the left before a further multiplication is
performed.

1-10 Checking facilities.

The EDSAC was designed with the understanding that .the programmer
would incorporate in his program such mathematical checks as he might con­
sider necessary , or arrange for them to be carried out afterwards. No special
checking devices are therefore provided inside the machine. It is, however,
desirable that there should be some means available whereby the programmer
can verify that a number computed and held in the store of the machine has
been correctly transferred to the teleprinter. For this reason there is an
order (the F order) which enables the number transferred to the teleprinter
by the last output order to be read back into the store. By making use of this
order it is possible to arrange that an indicating symbol, for example a ques­
tion mark, shall be printed if the number has been incorrectly transferred to
the teleprinter. Examples of how this is done will be found in the output sub­
routines given in detail in Part III of this book. It is of course possible that
even though the correct number has been transferred to the teleprinter a
wrong character will be printed. The design of the Creed teleprinters used
in conjunction with the ED SAC is such, however, that the possibility of an
error occurring beyond the point at which the check is made is remote.

CHAPTER 2

INPUT OF ORDERS

2-1 Initial orders.

This chapter is concerned with the process by which orders are read
from the tape and placed in the store of the EDSAC. The only way in which
a symbol punched on the tape can be read is by the operation of an I order.
To enable a program tape to be read, therefore, means are provided whereby
a short group of orders, known as the "initial orders" or sometimes as the
"initial input routine," can be placed in the store independently of the input
mechanism. These orders are wired in binary form on a set of stepping
switches (uniselectors), and are automatically transferred to the store (and
called into action) when the starting button is pressed. The initial orders are
needed only while the program tape is being read, and the space they occupy
in the store may be used again for other purposes during the course of the
calculation.

An order is punched exactly as it is written, the address being in decimal
form. The initial orders must therefore be such as to convert the address to
binary form, to assemble the complete order, and to place it in the correct
storage location. It is important to distinguish between the coded form in
which orders are punched on the tape and that in which they appear in the store,
and to realize that the relation between these two forms is determined solely
by the initial orders. By making the two forms more similar (for example, by
punching the address in the scale of 8 or 16) it would be possible to simplify
the initial orders. There would, however, be no advantage in doing this and it
would mean that more work would be left to the programmer, who would have
to carry out tedious conversions when constructing the program. It is highly
desirable that the machine itself should carry out as much of this work as pos­
sible; the chance of error is then reduced and the programmer is left free to
concentrate his attention on the more essential aspects of the program.

The choice of the initial orders, and thus of the form in which orders
are punched, is therefore a matter for careful consideration, since upon it de­
pends the ease with which all programs are constructed. Once the choice has
been made, a library formed, and several large jobs begun, a change in the
form of writing and punching orders would entail a big reorganization. The
form used with the EDSAC was changed in September 1949, after only a few
simple programs had been run; now, however, any substantial change would
be practically out of the question, even if it were desired (see reference 10).

The form in which orders referring to specific storage locations are
punched has already been described. First, there is a letter indicating the
function of the order, tl1en the address in its decimal form, and finally a code
letter which is either F or D according as the address refers to a short or a
long location. It should be noted that in the address zeros are not punched in
front of the first significant digit, for example A 50 F is puncheq, not A 0050 F;
if the order referred to the number in storage location 0 it would be punched
A F.

15

16 ELECTRONIC DIGITAL COMPuTER

The action of the initial orders can now be described. When an order
such as A 50 F or A F is being transferred from the tape to the store, the
first character to be read is the function letter, and the corresponding binary
number is placed by the initial orders in a suitable location for temporary
storage. The next character may be either a digit of the address or a code
letter F or D. These can be distinguished by the fact that F and D correspond
to binary numbers which are greater than ten. The character just read is
therefore tested by having 10-1/2 subtracted from it; if the result is negative
the character must represent a digit of the address, otherwise it represents
a code letter. As the successive digits are read the address is built up pro­
gressively in binary form. When the code letter is encountered the address
and the number representing the function letter are added together. If the
code letter is F the result represents the complete order and is transferred
to the store as it stands. If the code letter is D, 2-lti is added to the result
before it is transferred to the store.

In addition to the code letters F and D so far referred to, there are
thirteen other code letters which may be used to termin::tte an order. The ob­
ject of these code letters is to facilitate the use of subroutines in ways which
will be described later. Each causes the contents of a certain storage location
to be added to the order before it is transferred to the store. The complete
list of code letters is as follows:

Code
letter

F
e
D
¢>
H
N
M
Ll
L
X
G
A
B
c
v

Location whose content
is added to the order

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Number added

zero
variable
2- 15

variable

Storage location 41 contains zero, so that the code letter F leaves the order
unchanged. Storage location 43 contains 2-16 , so that code letter D causes z- 16

to be added to the order. These two code letters thus have the effect described
earlier.

All the above code letters indicate the end of an order, and cause it to be
placed in its correct location in the store. The code letter rr causes 2- 16 to
be added to the order (in this it resembles D) but must be followed by another
code letter to indicate the end of the order. It is thus possible by using rr to
cause both 2- 16 and some other number to be added to the order before it is
put away in the store.

INPUT OF ORDERS 17

2-2 Pseudo-orders.

A converse of the fact that orders are represented in the machine by
numbers is that numbers may be represented outside the machine by " pseudo­
orders," that is, tape entries which are punched in the same form as orders
but which are merely intended to be used as constants and are never to be
obeyed as orders. For example, the pseudo-order P n F is equivalent to the
number n · 2- 15 , since P corresponds to zero (see Appendix A); P n D is equiv­
alent to (n+1/2). 2-15 , and X F (where X stands for any letter) is equivalent to
x · n-4 , where x is the numerical equivalent of X. This is often a convenient
way of putting constants into the machine. It should also be noted that genuine
orders which are obeyed at one point in a program may also be used as con­
stants in other parts of the program.

When each order has been built up by the initial orders it is transferred
to its correct location in the store. The particular order in the initial input
routine which causes this transfer to take place will be referred to in what
follows as "the transfer order." The address specified in the transfer order
is increased by unity each time an order is placed in the sto!'e, so that succes­
sive orders are placed in successive storage locations.

2-3 Examples.

The following examples show orders and pseudo-orders as they are
punched and in the binary form in which they are held in the store.

Punched
on tape Held in store

rFunction
_A

Long/ short1
letter Address digit

A 6 F ~0 0 0 0 0 0 0 0 1 1 0 0
A 6 D 1.1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1
T D - 0.0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1
p 6 F 0.0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
p F - 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

If storage location 45 contains the number 80,

T 6 H 0.0 1 0 1 0 0 0 0 1 0 1 0 1 1 0 0

If it is desired to modify an order by means of a code letter other than D and
at the same time to make the order refer to a long storage location this can
be done by punching 1r immediately before the code letter. Thus

T 61rH 0.0 1 0 1 0 0 0 0 1 0 1 0 1 1 0 1

2-4 Control combinations .

Among the orders on the tape are punched groups of symbols called
"control combinations." These are distinguis hed from orders by the initia l
input routine; they are not placed permanently in the store but dir ect the man­
ner in which the input process is carried out. For example, the control com­
bination T m K, where m is an integer punched in decimal form like the address
of an order, causes the address in the transfer order to be replaced by m, so

18 ELECTRONIC DIGITAL COMPUTER

that the next order is placed in storage location m regardless of where the
previous order was placed, Succeeding orders go into storage locations m+1,
m+2, etc. For example, suppose that it is required to place the pseudo-orders
P 5 F and P 10 F in storage locations 45 and 46, and then to place a sequence
of orders in storage locations 100, 101, etc. The following will then be punched
on the tape in front of the orders:

T 45 K
P 5 F
P 10 F
T 100 K

The control combinations in most common use are given below. A fur­
ther list of control combinations is given in Appendix C. The initial orders
themselves, together with notes on their operation, are given in Appendix B.

TmK

GK

TZ

E mKP F

E 25 K T m H

this causes the next order on the tape to be placed in
storage location m

this causes the address in the transfer order to be
copied into 42, which corresponds to the code
letter 8

this causes the address held in 42 (m, say) to replace
that in the transfer order, so that the next order is
sent to storage location m.

this stops the reading of orders, and causes control
to be transferred to storage location m with the
accumulator cleared

this causes the next order on the tape to be placed in
storage location m+h, where h · 2- 15 is the number
in 45. H and 45 may be replaced by any other code
letter and the associated storage location.

2-5 Starting the program.

The first few inches of a program tape are always left blank and the
tape is inserted into the EDSAC tape reader with the reading head somewhere
on the blank portion. It is not necessary to set the first row of holes under
the reading head because the initial orders are designed to have the property
of ignoring blank tape, in the sense that they do not erase anything of impor­
tance from the store when it is read. It is, however, necessary to punch a
control combination at the end of the blank tape and immediately in front of
the orders. The usual control combination is P K T m K, and in this case
orders go into the store starting at storage location m. If the control combina­
tion P F is used orders will go into 45, 46, etc.; P Z will cause them to go
into 44, 45, etc. The action of the initial orders when reading blank tape is
described in detail in Appendix B.

The control combination E a K P F is punched at the end of the orders
to cause control to be transferred to a, which is supposed to contain the first
order of the program. The initial orders may be called in again, if required,
to read further orders from the tape by transferring control to storage loca­
tion 25. The accumulator need not be empty, but the first combination to be

INPUT OF ORDERS 19

read from the tape should be a control combination which will replace the
transfer order, for example T n K. If it is intended to use the initial orders
again in this way care must be taken to see that they are not written over by
numbers during the course of the program. If the initial orders have been
written over they may be replaced (after the machine has stopped) by press­
ing the starting button again; the contents of other parts of the store will be
left undisturbed.

2-6 Use of code letters.

The code letter (} has a special use in connection with subroutines. In
any subroutine it will be found that the addresses specified in some of the
orders are those of other orders or pseudo-orders in the same subroutine,
and therefore depend on the location in the store of the subroutine as a whole.
In order to illustrate this, a subroutine for replacing the number in storage
location 0 by its modulus is given below. It is shown with its first order
placed in storage location m and it will be seen that the address specified in
the second order depends on m.

m S F
m+1 G m+3 F
m+2 T F
m+3 T 1 F

Subroutines punched in this way would not be suitable for forming into a library,
since each could be used in one place in the store only. This difficulty is over­
come ~y punching the subroutine in the following form:

G K
S F
G 3 0
T F
T 1 F

The control combination G K at the head of this subroutine causes the address
specified in the transfer order, m say, to be recorded in storage location 42.
The orders of the subroutine are then placed in the store in order, the first
going into storage location m. When the second order is taken in, the code
letter (} which terminates it causes the number m in storage location 42 to be
added to its address. The order then refer s to the correct location within the
subroutine. It should be clearly understood that the modification of an address
brought about by the action of a code letter takes place at the time that the
order is being transferred from the tape to the store, and not at the time that
it is executed.

The use of the system described in the last paragraph enables l.ibrary
subroutines to be stored in the form of short lengths of punched tape which
can be copied mechanically on to a program tape. A description of the equip­
ment used for this purpose is given in Chapter 6.

The main purpose of the code letters, other than (}, is to make it pos­
sible for parameters to be incorporated in subroutines during input. This
matter will be taken up more fully in section 3-3, but a simple example will
be given here. The following subroutine is designed to replace the number in

20 ELECTRONIC DIGITAL COMPUTER

storage location h by its modulus, where 2-15 h is the number in storage loca­
tion 45. Were it not too trivial to warrant such treatment, this subroutine
might be contained in the library.

T Z
S H
G 3 8
T H
T F

If this subroutine were in the library and if a programmer wished to use it
for replacing the number in storage location 150 by its modulus, he would
copy it mechanically from the library tape on to his program tape, with the
following punched immediately in front:

G K
T 45 K
P 150 F

Note that the subroutine starts with the control combination T Z, which re­
stores the address of the transfer order to the value it ha'd before the pseudo­
order P 150 F was placed in 45.

2-7 Constants.

When the initial orders have finished their work the following constants
are left in the store:

storage location 2
storage location 3

P 1 F
U 2 F

These constants are used by most library subroutines and it is important that
they should be left undisturbed during the program.

2-8 Notation.

The following abbreviations will be used in this book.

n

nD

C(n)
C(nD)

C(Acc.)
C(R)
nH

short storage location having serial number n (the alterna­
tives nF or S(n) may sometimes be necessary to avoid
confusion)

long storage location formed by combining short storage
locations nand n+1, n being even (the alternative n' was
..~sed in earlier literature)

content of storage location n
content of storage location nD (the alternative C(n') was

used in earlier literature)
content of the accumulator
content of the multiplier register
storage location (n+h) where h · 2- 15 is the number in 45

during input of the part of the program concernedj alterna­
tively long storage location (n+h)D if (h+ 0.5) · 2- 15 is in
45 during input

INPUT OF ORDERS 21

D7TH long storage location (n+h)D where h · 2-15 is the number

C(nH)
C(n7TH)

in 45 during input of the part of the program concerned
content of nH
content of n7TH
(In the last four cases, H and 45 may be replaced by any

other code letter and its associated storage location)

REFERENCES

The following is a list of publications about the EDSAC:

1. Wilkes, M.V., The design of a practical high-speed computing ma­
chine, The EDSAC. Proc. Roy. Soc. A 195, 274 (1948)

2. Wilkes, M.V. and Renwick, W~n ultrasonic memory unit for the
EDSAC. Electronic Engineering 20, 208 (1948)

3. Wilkes, M.V., ProgressTn high-speed calculating machine design.
Nature 164, 341 (1949)

4.Wilkes, M.V., Electronic calculating machine development in Cam­
bridge. Nature 164, 557 (1949)
---5. Wilkes~.V., Programme design for a high-speed automatic calcu­
lating machine. J. Sci. Instr. 26, 217 (1949)

6. Wilkes, M.V. and Renwick, W., The EDSAC, an electronic calculating
machine. J. Sci. Instr. 26, 385 (1949)

7. Bennett, J .M., High-speed digital calculating machines. Distribution
of Electricity 22, 251 and 276 (1950)

8. Wilkes, M.V., and Renwick, W., The EDSAC (Electronic Delay Stor-
age Automatic Calculator). M.T.A.C. 4, 61 (1950) -

9. Wilkes, M.V., The use of the EDSAC for mathematical computation.
Appl. Sci. Res. B1, 429 (1950)

10. Wheeler, D.J., Programme organization and initial orders for the
EDSAC. Proc. Roy. Soc. A 202, 573 (1950)

11. Gill, S., A process fur the step-by-step integration of differential
equations in an automatic digital computing machine. Proc. Camb. Phil. Soc.
47, 96 (1951)
- 12. Wilkes, M.V., Automatic computing. Nature 166, 942 (1950)

13. Gill, S., The diagnosis of mistakes in programmes on the EDSAC.
Proc. Roy. Soc. A (in press)

A list of references of a more general nature will be found in

Hartree, D.R., Calculating instruments and machines . University of
Illinois Press, 1949, and Cambridge University Press, 1950

CHAPTER 3

SUBROUTINES AND PARAMETERS

3-1 Open subroutines.

The simplest form of subroutine consists of a sequence of orders which
can be incorporated as it stands into a program. When the last order of the
subroutine has been executed the machine proceeds to execute the order in
the program which immediately follows. This type of subroutine is called an
"open" subroutine.

3-2 Closed subroutines.

A "closed" subroutine is one which is called into use by a special group
of orders incorporated in the master routine or main program. It is designed
so that when its task is finished it returns control to the master routine at a
point immediately following that from which it was called in. The subroutine
itself may be placed anywhere in the store. There are various methods of
arranging the operation of entering a closed subroutine and returning to the
master routine after the operation of the subroutine has been completed. The
method chosen for use with the EDSAC is given below; n is the address of the
first order of the subroutine.

!'lumber of
storage
location

m

Order

A m F

G n F

Explanation
(Accumulator contains zero at this point)

adds number representing A m F into the
accumulator (this is negative, since A
corresponds to -4/16)

transfers control to n, since number in
the accumulator is negative

The orders in the subroutine are as follows:

n

n+P+1
ll+P+2

G K

A 3 F

T P+2 6

~
Z F

control combination; puts the value of n
in 42

adds U 2 F to contents of accumulator
(A m F) forming E m+2 F (link order)
since A=:-4/16, U=7/16, whence
A+ U=:8/16=E

plants link order in (n+P+2) (code letter
6 causes C(42), i.e. n, to be added to
address during input)

operational orders of the subroutine, p
in number. These leave the accumula­
tor empty

becomes E m+2 F (link order) as result
of order in (n+1)

Any order may be punched on the tape for the last order of the subroutine,
since it is overwritten by the link order. Often Z F or P F is used and this

22

SUBROUTINES AND PARAMETERS 23

has the advantage that if by reason of an error the link order is not planted in
the correct position the machine will stop and by the place of its stopping give
some indication of what is wrong. Orders which are intended to be changed
during the program are usually written in brackets.

3-3 Preset parameters.

It is desirable to be able to make library subroutines of as wide a utility
as possible in order that the total bulk of the library may be kept small. This
may be done by including in a subroutine one or more parameters which may
be given different values on different occasions. For example, 04 (see Part II)
is a division subroutine which divides the contents of a certain storage location
hD by the contents of the accumulator, where h is a parameter which may be
set in advance. Parameters of this kind are called preset parameters and it
is arranged that they are set to their correct values during input by making
use of the facilities described in Chapter 2 under the heading Code Letters.
In the case of the division subroutine mentioned, the following combinations
must be punched on the tape in front of the subroutine:

G K
T 45 K
P h D

The subroutine itself is headed by the control combination T Z instead of the usual
G K. The effect is that the number corresponding to PhD (i.e., h " 2- 15 + 2-16)

goes into storage location 45 and is therefore added to the address specified in
any order in the subroutine which is terminated with the code letter H. In this
way the numerical value of the constant h can be incorporated in the subroutine
during input. When a subroutine has a number of parameters they are punched
in order after the control combination G K T 45 K; they then go into storage
locations 45, 46, 17, etc., and are added to the addresses specified in orders
terminated by the code letters H, N, M, etc, respectively.

3-4 Program parameters.

The values of preset parameters are incorporated in a subroutine during
the process of input and are therefore fixed for the whole of a program. If it
is desired to include in a subroutine a parameter which can be given different
numerical values at different points in the same program, then a different
method must be used. Such a parameter is called a program parameter and
is normally placed immediately aft'er the orders which call in the subroutine.
An example is to be found in subroutine P 1 which prints the positive number
in OD to n places of decimals. This subroutine, assumed to have its first
order in p, is called in by the following group of orders (the accumulator con­
taining zero at this point):

m AmF

GpF

P n F

adds number corresponding to A m F into
the accumulator

transfers control to p (that is, to the be­
ginning of the subroutine), since the num­
ber in the accumulator is negative

program parameter specifying n

program parameter specifying n

24 ELECTRONIC DIGITAL COMPUTER

The subroutine is so constructed that an order A m+2 F is formed and planted
in a suitable position within the subroutine. When this order is obeyed it ex­
tracts the program parameter from the master routine and enables it to be
used by the subroutine. The link order formed is E m+3 F, instead of E m+2 F
as described in Section 3-2, since it must return control to the location which
follows immediately after that containing the program parameter. The actual
orders used in P1 are as follows:

G

0 A

1 u

2 s

3 T
4 H
5 (P

16
17 (E

18 u
19 1
2C M

K

18 9

17 9

20 9

5 9
1.9 9

F)

J
F)

3 n 1

control combination; puts p in 42 during
input. Subsequent orders can therefore
be numbered relative to the next order
as zero

adds U 3 F to C(Acc) (which is A m F as
in all closed subroutines on entry) form­
ing E m+3 9, the required link order

plants link order in 179 (i.e., in p.1.17) and
leaves E m+3 F in the accumulator

subtracts M 1 F from C(Acc) forming
S m+2 F (since E = 3/16, M = -&/16,
whence E-M = 12/16 = S).

plants S m+2 F in 59
first operational order of subroutine
becomes S m+2 F as result of order in 39

other operational orders of subroutine

becomes link order E m+3 F as result of
order in 19

pseudo-orders forming constants required
in the operation of the subroutine.

CHAPTER 4

LffiRARY SUBROUTINES AND THEffi USE IN CONSTRUCTING PROGRAMS

4-1 Library catalo~.

The library catalog used in the Laboratory is drawn up in two sections.
One gives a concise specification of the purpose of each subroutine together
with sufficient information to enable a programmer to make use of it; this in­
cludes information about the operating time and storage space occupied. The
second section gives the orders of each subroutine in full. The catalog is con­
tained in loose leaf books so that new sheets can be inserted as new subrou­
tines are added to the library. A condensed version of the catalog is given in
Parts II and III of this report: Part II consists of specifications of all sub­
routines now in the library except for some which are obsolete. Most of these
specifications are given in full but an abbreviated version only is given in the
case of some subroutines which can be regarded as variants of others that
are specified completely. Part III contains full program sheets for about half
the total number of subroutines in the library and includes all those which are
thought to contain points of special interest.

Although much labor can be saved by making use of the library in its
present form, it is still in many respects incomplete, and new subroutines
are continually being added. In particular, it is hoped that subroutines for
performing the following calculations will shortly be included: multilength
arithmetic, calculation of hyperbolic functions, solution of algebraic equations,
etc.

It will be found in a number of cases that there are two or more sub­
routines which perform very similar operations. Usually they differ in time
of operation and in storage space occupied. Normally the one with the short­
est operating time would be chosen for any particular application, but if the
program occupies nearly all the store, then storage space may become the
major consideration. Time of operation is of great importance only if the
subroutine is called in many times during the program, thus consuming a
large proportion of the total time.

Subroutines may also differ in numerical accuracy and in the number of
parameters which may be varied to suit particular applications. If a subrou­
tine has many parameters it is often useful to have a separate subroutine to
deal with any case that commonly arises, since a subroutine with fewer param­
eters is shorter and simpler to use.

4-2 Input and output subroutines .

All input subroutines read numbers punched on the tape in the scale of
ten, convert them to the scale of two, and place them in the store. Some sub­
routines read a single number only on each occasion they are called in, while
others read a series of numbers and place them in consecutive locations in
.the store. The subroutines may be further classified into those which read
decimal fractions from the tape and those which read integersf in the latter
case, when an integer n is read from the tape the number n·2- 6 or n-2-34 is
put into the store according as short or long numbers are being used. The

25

26 ELECTRONIC DIGITAL COMPUTER

conversion of decimal fractions is slightly simpler if the least significant
digit is read first and subroutines R5 and R7 are designed in this way. The
number tape can, however, be punched in the ordinary way with the most sig­
nificant digit first and reversed during the process of copying onto the final
tape.

Many subroutines contain numbers as well as orders. Short numbers
are best put in as pseudo-orders but long numbers may involve the use of an
input subroutine. In some cases, library subroutine R2 is included in such a
way that it is overwritten when the numbers have been taken in. Since, how­
ever, several subroutines in a program may need long numbers it is now com­
mon practice to draw up subroutines on the assumption that R9 has first been
put into the store. R9 is a modified form of R2 which allows the input of long
integers during input of orders. It is always placed in locations 56 to 70 in­
clusive.

When a subroutine contains only one or two long constants, an alterna­
tive to the use of an input subroutine is to put the constants in as two short
numbers. A difficulty arises, however, because there is an unused digit be­
tween each two short numbers (the "sandwich digit"). The method can only
be used, therefore, to put in a number which has a zero in the 17th position
after the binary point. This is not a serious limitation, since either the num­
ber itself or its complement is of this form unless it is an odd multiple of
2-l?. The long storage location intended to receive the constant must first
be cleared (to make sure that the sandwich digit is zero), and the two short
numbers planted one after the other. This method of putting in long numbers
is not often used now but examples will be found in Al and P7.

The output subroutines convert numbers in the store to the scale of ten
and cause them to be printed. Again they may be divided into those which deal
with decimal fractions and those which deal with integers (some of the latter
suppress nonsignificant zeros). Some output subroutines print the numbers
in a special layout; in other cases the output subroutine prints a single number
only and it is left to the programmer to arrange his own layout. Most of the
later output subroutines make use of the F order to verify that.the digits have
been correctly printed. If this check fails then some specia~ indication is
given, usually an extra line-feed.

By the use of suitable scale factors the input and output subroutines can
be made to handle numbers having the binary point in positions other than
those mentioned above.

4-3 Division subroutines.

The order code of the EDSAC does not include an order for division,
which must therefore be carried out by means of a division subroutine, sev­
eral of which are available in the library. One of these, 06, uses an
iterative formula and is arranged to give the greatest possible accuracy.
Others use a repetitive cycle to divide directly and contain fewer orders than
06. Errors can build up in this process, however, and these subroutines are
not as accurate as 06, although the result is usually reliable to about as many
figures as exist in the dividend.

LIBRARY SUBROUTINES 27

4-4 Trigonometrical and other functions .

When values of a trigonometrica l or similar function are required for
arbitrary values of the argument it is usually better to use a subroutine which
calculates them from first principles rather than to place a table in the store
and to interpolate from it. In many cases it is quickest and -simplest to use a
power s eries. In the earlier subroutines Taylor series were used, but later
subroutines use series based on Tchebycheff polynomials since in this way
the same accuracy can be obtained with fewer terms. An example of this will
be found in T7.

Sometimes repetitive methods based on very simple formulas and need­
ing very few orders are available; they are, however, usually rather slow.
Examples are to be found in subroutines E2 and Sl. In the latter case the re­
quired answer is built up digit by digit.

When a series of sines or cosines is required with equal increments of
the argument, subroutines T5 or T6, which are based on a recurrence formula,
may be useful. This situation occurs when a differential equation involving a
sine or cosine of the independent variable is being solved.

For most trigonometrical subroutines the angle corresponding to the
argument must be in the first quadrant. One routine (T4), however , can be
used for arguments of any magnitude.

An example is given in Section 7-1 of a program built up from the sub­
routines already discussed. The program ca.uses a series of numbers x (< 1)
punched on the tape to be read and the quantities e - sin x to be computed and
printed.

4-5 Quadrature .

Q1, Q2, and Q3 are subroutines for computing definite integrals. An
auxiliary subroutine for calculating values of the function to be integrated
must be constructed; this is called in as required by the integration subroutine.
Q2 and Q3 are based on Gauss' 5- point and 6-point integration formulas and
one of these is ordinarily the best subroutine to use. The usual objection to
Gauss' formulas , namely that the function has to be computed for awkward
values of the argument, is of no account when using an automatic machine (an
illustration of the different considerations which apply when selecting methods
for automatic as compared with hand computing). However , in some cases,
for example if the function to be integrated is obtained by integrating a differ ­
ential equation, a formula which uses equally spaced ordinates may be more
suitable. In these cases Q1, which is based on Simpson's rule, may be used.

A simple example of the use of such a subroutine will be found in Sec­
tion 7- 2, which gives a program for the calculation of 1T from the formula

~rr = 1~1 + x 2)-1 dx.

4-6 Assembly subroutines.

The example given in Section 7-1 illustrates two alternative methods of
assembling a program. In each of these the programmer has to decide where
the master routine and each subroutine are to go in the store and to insert

28 ELECTRONIC DIGITAL COMPUTER

the correct addresses in the orders in the master routine which call in the
subroutines. The object of an assembly subroutine is to relieve the program­
mer of these and other mechanical tasks.

4-61 Principle of operation of assembly subroutine Ml. Any complete
program contains one or more of the following components:

1. Sequenc~s of numbers
2. A master routine
3. Closed subroutines of two kinds:

(a) those made specially for the program
(b) those taken from the library.

When the subroutine M1 is used, the numbers in each sequence are numbered
0, 1, 2, ... , and are distinguished in the master routine and in the first group
of subroutines by code letters (H, N, M, •..) punched after each address, one
code letter being used for each number sequence. The closed subroutines are
numbered 1, 2, 3, etc., and are called in by orders A m1 e, G 1 ¢;A m 2 e,
G 2 ¢; etc., where m1, m2, etc. are the addresses of the storage locations in
the master routine from which the subroutines are called ln.

M1 is first punched on the tape and is followed by two parameters P r F
and T s K; r·2- 15 goes into 44 and its meaning will appear later. The compo­
nents of the program are then punched in the above order, each being preceded
by a control combination; the last component is iollowed by a control combina­
tion which starts the program. The components eventually go into the store
head-to-tail in the order in which they are punched. Suppose that the first num­
bers of the various number sequences (H, N, M, ...)go into locations n1, nz, ... ,
etc., that the first order of the master routine goes into m, and that the first
orders of the closed subroutines go into s1, s 2 , s3 , etc.

M1 is called in by the control combination punched at the head of each
component. It causes a record to be made of the location into which the first
order or pseudo-order of the component is about to go, in the following form:

1. When the number sequences go into the store, pseudo-orders P n1 F,
P n2 F, etc., go into 45, 46, etc.

2. When the master routine goes into the store, the order E m F goes
into r.

3. When the closed subroutines go into the store, orders G s 1 F, G s2 F,
etc., go into (r+1), (r+2), etc.

M1 then returns control to the initial orders, and the orders or pseudo-orders
which follow on the tape are read in the usual manner.

The control combination E 25 K E ¢ P F is punched at the end of the tape.
This sends control to r, where there is an E order which sends control to the
beginning of the program. When the pth subroutine is called in, control passes
to (r+p), where there is a Gorder which sends it to the beginning of the correct
subroutine. Orders in the master routine and in the subroutines which refer to
the various number sequences (distinguished by different code letters) have
their addresses corrected in the usual way by the addition of C(45), C(46), etc.

Normally, M1 causes the first order or pseudo-order of each component
to be placed in an even location. This means that here and there short storage
locations will be left unused. If this is considered undesirable, M1 may be

LIDRARY SUBROUTINES 29

called in in such a way that the first order or pseudo-order of the next com­
ponent goes into the next available location, whether it be odd or even.

4-62 Directions for use of Ml. The method of use of Ml is best ex­
plained by giving a schedule for the punching of the tape. Two number se­
quences and two subroutines are shown, but others may be added.

Notation: a location of first order of Ml
r location of reference order for master routine
s location of first order or pseudo-order to be placed in

the store

Tape

PKTaK
Assembly subroutine Ml

PrF J
TsK

space

PZGK
EaKTF
number sequence (H)

space

PZGK
EaKTF
number sequence (N)

space

PZGK
T(a+lO)K T ¢

E a KIF
Master routine

space

PZGK
EaKPF
subroutine no 1

space

PZGK
EaKPF
subroutine no 2
E 25 K
E¢PF

Notes:
J

Notes

copied from library tape

parameters

calls in Ml. which places P n 1 F in 45

calls in Ml, which places P n2 F in 46

sets Ml ready to pl,ace a reference
order in r

calls in Ml, which places G s 1 F in r+l

calls in Ml, which places G s2 F in r+2

sends control to master routine via r

1. If the combination E a K T D is punched in front of the first number
sequence instead of E a K T F, P n1 D will be placed in 45 instead of P n1 F
and similarly for the other number sequences.

30 ELECTRONIC DIGITAL COMPUTER

2. If it is desired to place a component of the program in the next avail­
able storage location regardless of whether it is odd or even, Ml should be
called in by E (a+l) K, instead of E a K.

3. If storage space is short, M1 may be placed where it will be over­
written by the last subroutine of the program.

4. Where spaces are shown on the tape at least two blank rows must be
left. If desired, the spaces may be omitted altogether, in which case the com­
bination P Z should also be omitted.

5. If it is desired to leave a gap in front of any component, the combina­
tion G n K should be punched instead of the G K immediately before E a K; n
storage locations will be left unused.

6. If there are no number sequences, the control combination
G K T(a+10) K T ¢ should follow directly after the parameter T s K.

7. M1 makes the address of the transfer order equal to C(42) (increased
by 1 if necessary); that is, it has a similar effect toT Z. Since it leaves the
address of the transfer order equal to C(42) it need not be followed by G K.

8. If the first number sequence is to go into the store immediately after
M1 the parameter T s K should be T a+l6 K.

9. The above proforma shows the normal way in which it is intended
that Ml should be used. Various other possibilities will suggest themselves;
for example, several E orders may be stored as reference orders in addition
to the one used for the master routine. It is to be noted that if M1 is called
in by the control combination E a K X q F, where X is any letter, the refer­
ence order manufactured and placed in the store will be (X+G) q F.

As an example, the program for the computation of
l I (1 + x2 r 1 dx

given in Section 7-2 is given in Section 7-3 in a revised form making use of Ml.

4-63 Principle of operation of assembly subroutine M2. This subroutine
handles the input of subroutines in a similar manner to M1, but does not apply
to number sequences. It requires fewer control combinations preceding sub­
routines than does Ml. M2 slightly modifies the initial orders and enables use
to be made of the code letter S. Control combinations terminated by S operate
as follows:

Case (1). Control combinations with zero address. First the address
specified in the transfer order (order 22) is copied into 42; this is the same
effect as that of the control combination G K. Next, a reference order is
stored, having the same address as that specified in the transfer order , and
the same function letter as the control combination. Thus the control combina­
tion X S, when the transfer is T n F, will put P n Fin 42 and store the refer­
ence order X n F.

Case (2). Control combinations with address 1. The address specified
in the transfer order, if even, is left unchanged, and if odd, is increased by 1.
Thereafter the effect is the same as in case (1).

Reference orders are always stored by M2 immediately after itself.
Thus if M2 commences in m, the reference orders are placed in (m+16),

LffiRARY SUBROUTINES 31

(m+17), ... , etc. The parameter P (m+16) F is automatically placed in 44 when
M2 is fed in, so that the code letter 41 will refer to the reference orders. For
example, G 2 41 will switch control to the third reference order.

For a normal closed subroutine the reference order will be a G order ,
switching control to the start of the subroutine. For the master routine an E
order may be used to direct control to the beginning of the program. In spe­
cial cases other letters may be useful.

M2 must be so placed in the store that room is left for the reference
orders which follow it. The first fourteen orders of M2 may be written over
by the last subroutine on the tape; the last two orders must remain undisturbed
until the tape is read, otherwise the code letter rr will not be read correctly.
The reference orders must remain throughou<: the program.

Orders punched immediately after M2 will be placed in 45 onwards.

4-64 Directions for use of M2. The following example shows how a
tape could be arranged for a simple program consisting of two closed sub­
routiries and a master routine.

Tape

PKTaK
subroutine M2

blank tape

]
P Z T s K E S T 45 K ~
parameters for master

routine

TZ J master routine

blank tape

PZ l
G 1ST 45 K

J
parameters for first

subroutine
first subroutine

blank tape

PZGS J second subroutine

blank tape

PZ J E 25 K E 41 P F

Notes:

1. m l Am, () J G 1 41
mz A m2 () J G 2 41

Notes

places M2 in store, commencing at a , and
puts P (a+16) F in 44

places parameters in 45 onwards

places master routine in s, sets C(42) to
P s F and stores E s F in 41

places parameters in 45 onwards, and sub­
routine in next even location following
master routine. Places G order in j 41

places subroutine in next location, odd or
even. Places G order in 2 41

switches control to 41, and thence to the
beginning of the master routine.

calls in first subroutine

calls in second subroutine

32 ELECTRONIC DIGITAL COMPUTER

2. Blank tape means at least two rows. If desired it may be omitted, in
which case the following P Z should also be omitted.

3. When preparing a subroutine (or master routine) with no preset pa­
rameters for use with M2, the G S (or E S) may be included at the head, in
place of G K.

4. Initial orders 27 and 28 are altered by M2.

4-7 Integration of differential equations.

There are in the library four subroutines for integrating ordinary dif­
ferential equations (not necessarily linear) by step-by-step processes. G3
and G4 enable second-order differential equations with the first derivative ab­
sent to be integrated; they are based on conventional methods using difference
formulas in which use is made in each interval of values of the function calcu­
lated in previous intervals. They have the disadvantage that special methods
are needed for starting the integration.

Gl and G2 are subroutines for integrating sets of simultaneous first­
order differential equations using a modified Runge-Kutta method (ref. 12)
which is described below. This method has the advantage that a special start­
ing procedure is not necessary and, since any differential equation or set of
differential equations can be reduced to a system of first-order equations, it
is of wide utility. In cases where both are applicable it is, however, somewhat
slower than the method used in G3 and G4.

4-71 Library subroutines Gl and G2. The modified Runge Kutta process.
This process handles a set of simultaneous first-order ordinary differential
equations, in which each derivative is expressed explicitly in terms of the
variables

YJ. = fl(yl , Y2, Yn),

Y~ = f 2(Y1 • Yz ' Yn),

y;, = fn(Yl, Y2 , Yn).

Any equation or set of equations must be expressed in this form before the
process can be applied. For example,

y" = -w2y

may be written yl_ = wy2 '

Y2 = -wyl,

where y1 = y and y2 = y' / w.
The case in which the functions f involve the independent variable can

be treated by the method described in Section 4-72.
The subroutine Gl or G2 carries out one step of the integration each

time it is called in. In doing so, it makes use of an auxiliary subroutine which
evaluates the functions f 1 ... ~. The auxiliary subroutine must be provided
for the individual problem. It is called into play four times during each step.

The auxiliary subroutine is asked to provide the quantities hy ' multiplied
by a suitable scale factor 2m, where h is the length of the interval, and m is
chosen to be as high as possible without exceeding capacity.

LIBRARY SUBROUTINES 33

Apart from the 2n storage locations used to store y and 2mhy 1 , further
n locations are used as working positions by the integration subroutine (to
hold the quantities 2mq, see Section 4-73). The numbers left standing in these
locations after the end of a step are 3 x 2m times the rounding-off errors of
the quantities y; they are taken into account during the following step, and
serve to prevent the rapid accumulation of rounding-off errors. As a result,
the effective numerical accuracy is m digits more than the capacity of the
storage locations. At the beginning of a range these working positions must
be cleared, otherwise the integration routine will add spurious "corrections"
to the variables. Apart from planting the initial values of the variables, this
is the only preparation required before starting an integration.

The truncation error in one step is of order h5 • Ordinarily it is about
10- 2 h5 , so that maximum accuracy is obtained with h = 2-7 or ~8 for long
numbers , and h = 2-3 or 2-4 for short numbers. If the functions are very
sensitive to variations in y, or if the number of equations is very large, small­
er steps will probably be necessary.

4-72 The independent variable. If the independent variable occurs in
the functions f, it may be obtained by integrating the equation X 1 = 1. x is
treated as an additional dependent variable, for which the auxiliary subroutine
has to provide the quantity 2mhx 1 = :f'h. In point of fact the latter may be
planted at the beginning of the integration and left there, so that the auxiliary
subroutine is relieved of the task. If the independent variable does not appear
in any of the f's but is merely wanted for indication purposes, it is quicker to
use a simple counter in the master routine.

When x is generated by integrating x 1 = 1, the values which it assumes
during the four applications of the auxiliary subroutine within one step are
xo, (xo+~h), (xo +~ h), and (Xo+h) respectively, where x 0 is the beginning of the
step. This ha.s two implications. First, if time is of great importance, x may
be generated by using a binary switch in the auxiliary subroutine, so that ~ h i8
added every other time the subroutine is used; x may then be used in calculat­
ing the f's, but does not require the introduction of an additional "dependent"
variable. Second, if the f's involve a function of x which is tabulated at equal
intervals, it will only be necessary to employ the tabulated values, or values
interpolated at simple fractions of the tabular interval.

In the case of Gl, if either of the suggestions in the preceding paragraph
is carried out, Gl should be placed in the upper half of the store to obtain maxi­
mum accuracy (the ideal position is 386 onwards). This is because one of the
orders forms part of a constant which thus depends slightly on the location of
the routine. In normal use the effect is quite negligible, but it does mean that
the last value of x in each step may differ from (Xo+h) by at most 2-03 •

If h cannot be expressed exactly in binary form, there is a numerical
advantage in generating x by integrating X 1 = 1. Owing to the high digital ac­
curacy afforded by the "bridging" values of 2mq which are carried over from
one step to the next, the accumulation of rounding-off errors in x occurs much
less rapidly than it would if x were obtained by the repeated addition of h.

4-73 Definition of the process. The process is defined by the equations
below. y iO is the value of the ith variable at the beginning of a step; Yi4 is
its value at the end of the step. While the 2mk ip 's for one value of pare being

34 ELECTRONIC DIGITAL COMPUTER

calculated by the auxiliary routine, the corresponding Y:ip and 2IIlq _ip (i = l. .. n)
are stored. The quantities rip are only used in the formation of the corre­
sponding Yip and %p , and do not need to be carried over to the following value
of p. Each r is rounded off to the same number of places as y.

Yi4 and Qi4 become Yio and Qio for the following step. The scale factor
2m employed in storing k and q is left out for simplicity.

k iO = hfi (Yoo , Y1o ,)

rn = (1/2)kio - wqiO

Yn=YiO +ru

Qn = q~'J + 3rn - (1/2)k ill

kn = hfi (Yol, Yn , .•..)

ri2 = (1 - Vi/2Hk n - Qn)

Yi2 = Yil + r i2

Qi2 = Qil + 3ri2 - (1 - Vi72)k il

k i2 = hfi (Yo2 , Yl2•)

r i3 = (1 + Vi72Hk i2 - qd

Y i3 = Y i2 + r i3

Qi3 = Qi2 + 3r i3 - (1 + vl/2)k i2

ki3 = hf dYo3 , y -._3 , .• . .)

r i4 = 1/6(ki3 - 2q i3)

Yi4 = Yi3 + r i4

Qi4 = Qi3 + 3ri4 - (1/2)ki3

i = 1 n

The coefficient w appearing in the expression for r n is not critical. The
best value is actually 1, but G1 and G2 use the value 1/2, as it simplifies
the program.

An example of the use of these subroutines is given in Section 7-6.

4-8 Processes. Interpretive subroutines.

There are in the library a number of subroutines which, when called in,
execute series of operations according to sets of parameters in the store.
The codes by which these parameters are interpreted are determined by the
design of the routines themselves, and are arranged to simplify the coding of
such operations as the handling of complex numbers and numbers in floating
point form (see below).

These subroutines are usually called in by the method used for the closed
type, the parameters following the orders which call in the routine. The rou­
tines do, however, form a distinct class, and have been labelled " interpretive."
Such a routine is defined as one which executes an operation defined by each
parameter according to a code which is independent of the position of the pa­
rameter in the series. Usually the series is of indefinite length, being termi­
nated by a special parameter.

LffiRARY SUBROUTINES 35

Each parameter may be regarded as an "order," and thus the use of
interpretive routines effectively extends the order code of the machine by in­
creasing the complexity of the operations which may be performed in response
to a single "order." The resulting gain in expediency of programming is
offset by an increase in the time required by the machine to carry out the cal­
culation, due .to the higher percentage of orders concerned purely with organiz­
ing the operations.

4-81 Operations on complex numbers. Subroutines B1 and B2 are inter­
pretive subroutines which enable operations to be performed on complex num­
bers whose real and imaginary parts are stored in consecutive long storage
locations. The orders which define operations on complex numbers are placed
in the master routine directly after the orders used to call in the subroutine.
By the use of these subroutines the processes of addition, subtraction, trans­
fer, and shifting may be carried out on complex numbers. Subroutine B2 will
also carry out complex multiplication. The order code used is the normal
order code of the EDSAC with certain small exceptions described fully in
Part II.

Further subroutines dealing with complex numbers are described in the
next paragraph.

4-82 Floating point subroutines. One difficulty which arises in pro­
gramming complicated problems is the control of the magnitudes of the num­
bers involved. With the binary point at the extreme left-hand end of the ac­
cumulator, repeated addition may cause the accumulator to overflow at the
left-hand end and repeated multiplication may cause loss of significant figures
at the right-hand end. To prevent this, it is necessary to place the number in
a suitable digital position within the arithmetical unit. In complicated programs
this may be difficult or impossible to estimate in advance. Subroutines have
therefore been prepared that will automatically adjust the scale factors associ­
ated with particular numbers or groups of numbers.

These subroutines carry out arithmetical operations with real or com­
plex numbers expressed in the "floating decimal" form a·10P, where I aj is
restricted to lie between two limits such as 1 and 10. In this form it is pos­
sible to represent numbers having a wide range of values fairly accurately
over the entire range. The digits representing the exponent and those repre­
senting the numerical part together form the digits of one long number~. (or two
long numbers if a is complex).

The main library subroutines dealing with numbers in floating decimal
form consist of the following three groups.

A1- A4

A3 and A4 are two versions of a subroutine to carry out special arith­
metical operations (described in detail in the specification of A3 in Part II) on
real numbers expressed in the following standard floating decimal form:

X = X 0 ·10P,

where X. is a seven decimal-digit number and p is an integer such that

4>1Xoi ~0.4,
512 > p ~ -512.

36 ELECTRONIC DIGITAL COMPUTER

The two parts of the number X are packed into a single long storage location,
ten digits being allocated to the signed exponent, p, and the remaining 24 to
the numerical part, X0 • That is, in the store, X is represented by the number
2-12 ·Xo + 2- 9·p.

The subroutines unpack each number when it is required and place the
numerical part and the exponent in separate long storage locations or " regis­
ters" ready for the special arithmetical operations to be performed. Similarly,
answers are packed up and stored if they are not to be used again immediately.
The special Read and Print subroutines A1 and A2 provide these packing facili­
ties for the input and output of data to be used by A3 and A4. In A1, p is further
restricted to the range 256>p>O.

A5- A8

A5 and AS are similar to A3 and A4 but operate on complex numbers ex­
pressed in the following standard floating decimal form:

Z = z0 ·10P = (X0 + iY0)-lOP,

where Xo and~ are seven decimal-digit numbers and pis an integer such
that

4>1 Yx6 + Y8iz.o.4,
2048 > p 2. -2048

Two long storage locations are used to hold one such complex number , the
first 28 digits of each representing Xo and Yo, and the remaining total of 12
being used for the exponent, p. That is, in the store, the number Z is repre­
sented by 2-2 ·Xo in rD and 2-2 ·Yo in (r+2)D, each rounded off to 28 binary
places. The last 6 digits of each of these storage locations contain the most
and least significant halves respectively of the 12-digit integer p, the left­
hand digit of which is treated as a sign digit.

A6 and A 7 are special Read and Print routines for the input and output
of complex data to be us ed by A5 and A8. In A6, pis further restricted to
the range 2048>p2.0.

A9- All

All is an interpretive subroutine which performs the ar ithmetical opera­
tions of addition, subtraction, multiplication, and transfer on real numbers ex­
pressed in floating decimal form, in accor dance with a code of program param­
eters detailed in the specification in Part II. Each number is expressed in the
form a·Hf and is represented in the store by the long or short number a·2- 11 +

2- 6 p· .
A9 and A10 provide for the input and output of data to be used by All.
One other subroutine, K8, also uses floating point arithmetic for special

operations on power series. These are described in Part II.
Floating point subroutines help to preserve accuracy by retaining a fixed

number of significant figures in the most advantageous position wit!lin the ma­
chine. They can, however, do nothing to prevent the inherent loss of accuracy
which results from thP !1;\lbtraction of two nearly equal quantities. For example,
in the subtraction

3.214567 X 105 - 3.214032 X 105 = 0.000535 X 105,

the difference is afterwards converted to standard form (that is, 0.535000 x 102),

LIBRARY SUBROUTINES

before use in another calculation. The last three figures in this case are
meaningless and the accumulation of such nonsignificant figures may still
present a problem for the programmer.

37

Al - A8 were developed for the problem of locating zeros of arbitrary
real or complex functions by the "root squaring" method (see Section 7-8).
A9 - All are intended for more general use.

4-83 Packing of orders used with interpretive subroutines. It often
happens that the "orders'' used in connection with an interpretive subroutine
are few in number and refer only to a limited number of addresses. This is
especially so with vector operations, where a single address can be used to
specify a complete vector or matrix, but it is by no means restricted to such
cases.

In such an event space may sometimes be saved by packing two or more
orders into a single storage location. The associated interpretive subroutine
must then also incorporate unpacking facilities. A special input subroutine
must also be provided unless the orders used are translated into the form
normally accepted by the initial orders - a laborious process if many orders
are involved.

No subroutines using this principle have yet been included in the library
but a short account of one problem to which these methods have been applied
will be found in Appendix D.

CHAPTER 5

PITFALLS

Even a first-class computer will sometimes make a mistake (although
he will not allow it to go undetected for long). In the same way a programmer
will sometimes make a mistake in the master routine, in a subroutine, or in
the make-up of the tape. Some mistakes may cause the answer to be in error.
Others may cause the machine to obey a wrong sequence of orders, or to try
to obey some constant order or pseudo-order not intended for such use. In
the latter case the machine will stop on a meaningless order, or perhaps go
into a closed loop. The machine may print a number of symbols or it may
print nothing at all.

Experience has shown that such mistakes are much more difficult to
avoid than might be expected. It is, in fact, rare for a program to work cor­
recti~ the first time it is tried, and often several attempts must be made be­
fore all errors are eliminated. Since much machine time can be lost in this
way a major preoccupation of the EDSAC group at the present time is the
development of techniques for avoiding errors, detecting them before the tape
is put on the machine, and locating any which remain undetected with a mini­
mum expenditure of machine time.

Library subroutines are all checked on the machine before being put into
the library and are presumably free from error. This in itself would be a suf­
ficient reason for having a library, quite apart from any other considerations.
When subroutines are specially made for a particular program it is good prac­
tice to test them beforehand by means of short programs constructed for the
purpose.

It is easier to avoid and detect errors if the program is drawn up in an
orderly and logical manner. For example, if siX quantities x : , x2 , x3 , Yl, y2 ,

Y3 occur, they should be placed in consecutive storage locations and not scat­
tered about the store. Similarly, orders and pseudo-orders used for counting
purposes should be arranged on some plan and not placed at random in the
store. When drawing up a complicated program the programmer should not
hesitate to copy it out in a more logical layout whenever necessary. The paral­
lel case of hand computation will suggest itself; good computers usually pay
great attention to the arrangement of their work sheets.

It is of great assistance, both to the programmer and to a person check­
ing the program, to provide notes describing the actions of the orders, as is
done for all library subroutines (see Part III). The notation for entry points,
etc., given at the beginning of part III, is also designed to help in understanding
programs.

5-1 Proofreading of programs. Points to be checked.

Some idea of the types of mistake which can occur is given by the follow­
ing list of points that should be checked before a program is punched. Many
of these are of a purely clerical nature, and could be checked by a person with­
out great mathematical ability. Others may require an understanding of the
particular calculation.

38

PITFALLS 39

1. No two subroutines may occupy the same storage locations, unless
one is only used temporarily before the other is inserted.

2. All conditions contained in the specification of each library subrou­
tine used must be met. For example, if it is necessary that the subroutine
start in an even location, this point should be checked, and 'it should be made
certain that all parameters have been correctly specified.

3. When calling in a closed subroutine, (a) the accumulator must first
be cleared, (b) the A and G orders must specify the correct addresses.

4. Where necessary, addresses must be corrected after renumbering.
5. Counting operations should give the correct number of repetitions,

and control must be transferred to the correct point when repeating a cycle.
6. The program should be prepared so as to leave a location for any

order which is to be planted by the program itself. This is usually done by
writing a dummy order such as (Z F) or (P F).

7. Control must be directed to the correct place to start the program.
8. No item of information in the store should be overwritten until it is

no longer required. In particular, no wanted information should be left in a
location that is used as a working positio:t by a subroutine.

9. The contents of the multiplier register must not be assumed to be
unaltered by a subroutine.

5- 2 Location of mistakes in a program.

It might be thought that a good way of finding errors in a program would
be to make the machine proceed order by order under the control of the
"Single E.P." button (see Section 6-4), and to study the numbers in the ma­
chine by watching the monitors attached to the arithmetical unit and store.
This, however, usually turns out to be a very slow and inefficient process,
especially as the numbers are displayed in binary form. Methods have there­
fore been developed which permit the machine to proceed unhindered by the
operator, whilst printing on the teleprinter a permanent record that can be
studied at leisure, and that will assist in understanding the nature of the mis­
take .

One such method is to wait until the machine has stopped (or to stop it
deliberately) and then, without clearing the whole store, to insert (by pressing
the starter button again) a small program which will print, in suitable form,
the contents of part of the store. This has come to be known as the "post­
mortem" method. Tapes are kept available near the EDSAC for printing the
function letters, or address parts, of orders in consecutive storage locations.
Programmers may also prepare their own post-mortem tapes.

This method yields only a static picture of the store as it was when the
calculation stopped. Other methods have been derived to provide information
about the whole course of the calculation. These necessarily involve modify­
ing the program to cause the extra printing, and therefore a new tape must be
prepared and presented to the machine. This, however, is no hardship, since
the machine will read an average tape in about a minute, and the preparation
need not take more than a few minutes of the programmer's time.

5-21 Method using extra output orders. One simple and very useful plan
is to place an output order at the beginning of the master routine and in front
of each subroutine so that the completion of the various stages of the program

40 ELECTRONIC DIGITAL COMPUTER

will be recorded by the printing of suitably chosen symbols. If by reason of a
programmer's blunder the machine stops in the middle of the program, the
symbols printed will enable the error to be localized. Letter and figure shifts
must also be inserted if letters are -required for indication purposes while the
ordinary printing of numbers called for by the program takes place correctly.

As an example the program given in Section 7-2 is repeated in Section
7-4 with the extra print orders incorporated.

When the program has been made to work correctly, the extra printing
may be eliminated by omitting the extra orders from the tape. If an assembly
subroutine (or the second method of assembling a program described in Sec­
tion 7-1) is used, no renumbering is necessary. Note that two extra orders
must then be placed in front of any subroutine which is required to have its
first order in an even location.

It is a good plan to include extra printing of the kind described here in
all new programs when they are first drawn up rather than to wait until the
program has been tried and found to fail.

5-22 Subroutines for checking programs. Methods like the foregoing
are too limited to deal with many of the questions that arise. In such cases
a considerable modification of, or addition to, the original program is neces­
sary. It has been found possible to construct subroutines which incorporate
all these modifications and additions, and which are sufficiently general to be
applied to any program. These form category C of the library and fall into
two classifications, those that check the sequence of operations and those that
check the numbers operated upon.

For their operation, these methods depend largely on the technique used
in interpretive subroutines (see Section 4-8), namely, the repeated selection
of "parameters" from another part of the store. In this case, however, the
"parameters" are simply the orders of the original program, and they are
selected and carried out in exactly the same manner and sequence as if they
were being obeyed directly. The purpose here is not to enable new operations
to be initiated by each order, but to make it possible (by suitably designing
the checking routine) to interpose the printing of extra information for check­
ing purposes. Another technique employed is the planting in the original pro­
gram of an E order (or "blocking order") which switches control to the check­
ing routine.

For a full discussion of checking routines see ref. 13.

5-23 Subroutines that check the sequence of orders carried out. Certain
checking subroutines print the function letters of orders as they are obeyed,
this being the most convenient way of checking the sequence of operations.
Subroutine Cll is the simplest; it checks through the whole program without
a break. Letters are printed in a line across the page until a transfer of con­
trol occurs, when a new line is started. An example of the use of Cll is given
in Section 7-5.

C7, C9, and C12 are rather more elaborate versions of Cll, and provide
for the suppression of checking or printing during irrelevant parts of the pro­
gram to save time.

5-24 Subroutines that provide numerical checks. Some mistakes in pro­
grams cause the numbers operated upon to be in error, without immediately

PITFALLS 41

affecting the sequence in which the orders are obeyed. It cannot therefore be
assumed that if a program apparently operates correctly it is giving correct
results, and careful numerical checks must always be applied. Moreover, the
diagnosis of such mistakes can be as difficult as that of mistakes which affect
the order sequence.

A numerical fault may be due to a mistake in a single order or in a con­
stant, or to a more fundamental mistake, such as a wrong choice of scale fac­
tors that causes a number in the machine to exceed unity. Some knowledge
can be gained by printing several intermediate results, and it is usually ad­
visable to include such extra printing in the first draft of any program.

If this is insufficient, subroutines Cl, CS, and ClO can be used, in con­
junction with the program, to cause the printing at frequent intervals of num­
bers involved in the calculation.

5-3 Counting operations.

Even the simplest of programs usually contains cycles of orders which
have to be repeated a certain number of times. The methods commonly em­
ployed to ensure that the correct number of repetitions is carried out are ex­
plained in Appendix E.

Some programs involve rather complicated counting operations, and it
is easy to make an error in these. As a means of simplifying the preparation
of such programs a number of counting subroutines, Ul to US, have been in­
corporated in the library. The use of the closed counting subroutines Ul and
U4 undoubtedly enables the layout to be improved but at the expense of making
the program rather longer than it otherwise would have been. The open rou­
tines U2, U3, and US will probably be of more general utility and their use
suould enable many errors of counting to be avoided.

CHAPTER 6

USE OF THE EDSAC AND ITS ASSOCIATED EQUIPMENT

6-1 Tape punching and editing facilities.

This section will deal with the preparation of a punched tape from a
program sheet which has been prepared in the manner described in the pre­
vious sections. So far no attempt has been made to set up in the Mathemati­
cal Laboratory an elaborate organization for punching tapes. Most of the
punching is done by the users themselves , although some assistance is avail­
able when necessary. The problems dealt with so far have not required a
great deal of input, although in one or two cases several hundred numbers
have had to be read for one run.

The main pieces of equipment provided for the preparation and editing
of tapes are described below.

6-11 Keyboard perforator. Use is made of standard 5-hole teleprinter
keyboard perforators modified so as to conform to the special EDSAC code.
Several are available for use.

6-12 Tape Duplicator. This name is given to a device used (a) to pre­
pare a corrected copy of a tape and (b) to build up a complete program tape
from number sequences, the master routine , and subroutines which havE:
been punched separately. It incorporates a keyboard perforator which has
been fitted with five solenoids (one for each hole) in addition to the usual keys.
The solenoids are linked to a tape reader and the operator may prepare a new
tape partly by operating the keys in the ordinary way and partly by copying
data from a separate piece of tape placed in the tape reader. When copying
he can make the duplicator run continuously or in single steps. If he wishes
he can also make the tape reader advance the original tape without copying
it onto the program tape. If a switch marked "Ignore 11111" is closed any
row of the original tape in which all five holes are punched will be passed
over and omitted from the copy. This enables a row of five holes to be used
as an erase sign when punching. If another switch marked ' 'Ignore 00000'' is
closed the tape reader will automatically pass over blank tape. A further
facility is a key which causes blank tape to be fed automatically from the
punch.

Two duplicators are available and a standard tape reperforator for pro­
ducing straight copies of a tape is also provided. Two tape readers and a
changeover switch are provided with each duplicator for use when building up
a complicated tape from short pieces.

6-13 Tape comparator. This device enables two tapes which are sup­
posed to be identical to be checked one against the other. They are placed in
separate tape reade1·s and when a switch is depressed are advanced automati­
cally as long as the symbols punched on them are identical. When a discrep­
ancy is encountered the tape readers stop. Switches are provided for advanc­
ing either tape independently in single steps and for ignoring blank tape. Two
comparators are available.

42

USE OF THE EDSAC 43

It is normal practice to punch the various number sequences, master
routine, and subroutines which go to make up a program tape separately and
to combine them later. Each part is punched twice and the two are checked
by means of a comparator to make sure they agree. In this way errors of
punching can be detected. Of the various errors which occur when preparing
a problem for the EDSAC errors in punching are the least excusable.

6-2 Storage of library subroutines.

Subroutines in the library are punched on colored tape so that they can
easily be distinguished from program tapes, which should be white. Several
copies of each subroutine are provided and when not in use each copy is rolled
in a small cardboard box. The boxes are filed in serial order in a steel cabi­
net. The master copy of each subroutine is kept under lock and key and is
used only when all existing copies of the subroutine are damaged. The master
tape is then used to prepare further copies by means of a duplicator. All
copies must be checked against the master, by means of a comparat1r, before
being put into the library for general use.

6-3 EDSAC organization.

The following brief note on the organization of the machine room may be
of interest. When a program tape is ready to be put on the machine the pro­
grammer writes out a ticket saying what he expects the machine to print and
giving any other information which the operator may need. He then hangs the
tape with its ticket from a clip running on a horizontal wire. The various
tapes hanging from the wire form a queue and the machine operator puts them
through the EDSAC in order, subject to any overriding instructions about pri­
ority. If the machine prints what is expected, the output sheet is placed in a
rack ready for collection by the programmer. If the machine stops unexpected­
ly the operator notes on the ticket the place at which it has stopped (that is,
the number in the sequence control register) and then proceeds to the next
tape in the queue.

A m•mber of test tapes are available by means of which the operator can
make regular checks on the operation of the machine. Should one of these
tapes reveal an error the maintenance staff is called upon to rectifv the fault.

6-4 EDSAC controls.

The EDSAC requires no preliminary "setting up" for a particular pro­
gram. The procedure when a program tape is to be run is as follows .

1. The tape is inserted in the tape reader.
2. The "clear store" button is pressed to clear out any information

previously in the store.
3. The start button is pressed and causes the initial orders to be placed

in the store. Under control of these orders the tape is then read and the pro­
gram carried out according to the orders on the tape.

The purpose of the "clear store" button is to ensure that the machine is
always in the same condition when a program is started, and should therefore
always react in the same way to the same tape. If, during a program, the

44 ELECTRONIC DIGITAL COMPUTER

machine is suspected of being faulty, the program can be repeated and if con­
sistent results are not obtained the fault is known to lie with the machine and
not with the program. Other push button controls provided for occasional use
are

Stop

Reset

Single E.P.

- stops the machine in exactly the same way as a Z
order.

- used to restart the machine after a "stop" operation
or a Z order.

- may be used after a "stop" operation or a Z order.
Every operation of this control causes the machine
to execute one single order.

CHAPTER 7

EXAMPLES

Sections 7-1 to 7-5 describe how some relatively simple calculations
might be programmed for solution on the EDSAC, making use of library sub­
routines. Sections 7-6 to 7-8 are examples of actual problems prepared for
the EDSAC. In all the program sheets the notation used is that described at
the beginning of Part III.

7-1 Example 1. Calculation of e-s in x (see Section 4-4) .

This process causes a series of positive numbers x (<1) to be read
from the tape and the quantities e- 5 i n x to be calculated and printed to nine
decimal places. Four values of x have been chosen: 0.1234, 0.986, 0. 74281079,
and 0.84314763. Each of these will be read in turn and the corresponding
value of the function printed before the next value of x is read. After printing
the fourth value of the function the machine will stop. Five library subrou­
tines and a master routine specially constructed for this problem are used
and positioned in the store as follows:

Subroutines, etc.

R9
T7 (sine, rapid)
E4 (exponential, fast)
R3 (input one signed

decimal fraction)
Pll (print signed deci­

mals in preset layout)
Master routine

Location of
first order

56
72*

108*

144*

185
240

Number of storage
locations occupied

15
36
36

41

55

*First order must be in an even location.

7-11 Make-up of tape.

[R9 [

PF

space P z
[T7[

space P Z

[E4 [

space P Z

jR3[

space P Z

R9 begins with P K T 56 K so that it is
automatically placed in locations 56 to 70.

Extra pseudo-order put in to bring first
order of T7 into an even storage location.

45

46 ELECTRONIC DIGITAL COMPUTER

GK

T 45 K

A 258 D (H parameter)
P 20 F (N parameter)
P 47 (} (M parameter)
P3104 F (.1 parameter)

space P 'l

I Master routin~

space P K

E 240 K P F

1234 +
986 +

742 81079 +
843 14763 +

1 -

7-12 Master routine.

Start
17-0

1
R3 - - 2

3
4

3-5
6
7
8

T7-9
10
11
12

G
A
G
A
E
z
R
T
A
G
s
L
T
H

K
(}

144 F
D

5 (}

F
D

4 D
7 (}

72 F
4 D

D
D
D

Places in 42 the address specified in the
current transfer order.

Sets transfer order s o that parameters
following go into 45 to 48.

4 columns j parameters
3 spaces between columns used by P11
digit layout: 4 digits,

space, 5 digits
Pll begins with T Z, so that the address

stored in 42 is replaced in the transfer
order. Pll is therefore placed in 185
to 239.

When this control combination is read,
control is switched to 240, which con­
tains the first order of the master rou­
tine.

l values of x. These are not placed in the
· store during input of orders but are read

J one by one under the control of R3 when
that subroutine is called in by the mas­
ter routine.

the master routine is drawn up so as to
stop the machine if the number read
from the tape is negative , and this stops
the program.

J calls in R3 , which reads x from the tape
and places it in OD.

J
J
J
J

x to accumulator.

stops process if x is negative.

1
2 x to 4D ready for T7.

calls in T7, places ~ sin x in 4D.

-sin x to OD.

-sin x to multiplier register ready for E4.

13
14

E4-15
16

P11-17

A
G
A
G
E

E
T

13
108

15
185

69
258

9

7-13 Notes.

(}

F
(}

F
(}

K
D
1T

EXAMPLES

J calls in E4, forms e-sin x and places it
in OD.

J calls in P11, prints e- s in x .

transfers control to 08 as accumulator
is clear.

47

J places decimal round-off number required
by P11 (i.e., 5.1o-10) in 2580.

1. "Space" indicates that a few rows of blanks (there must be more than
one) are left on the tape. The object is to enable the subroutines to be identi­
fied easily when checking the tape or making corrections (see Chapter 2). The
control combination P Z which follows each space sets the initial orders back
into the condition they were in before the space. If spaces are not required on
the tape these control combinations should be omitted.

2. The machine can be stopped by pressing the stop button when reading
the blank tape following the main program and can be restarted by pressing
the reset button. This does not affect the content of the store. In certain cir­
cumstances it is convenient to divide the tape into two parts, an order tape,
going as far as the main program and ending with a length of blank tape, and a
number tape, beginning with P K E 240 K P F, followed by the numbers. The
machine would then be stopped on blank tape after the master routine had been
read, the number tape would be inserted in the tape reader with blank tape un­
der the reading head, and the machine would be restarted by pressing the re­
set button. In this way a great many number tapes could be used with one order
tape.

3. This program consists of a total of 202 orders, but only the 18 orders
of the master routine have to be drawn up especially for this calculation.

7-14 Alternative method of making up a tape. In the above method of
making up a program tape the subroutines automatically follow one another in­
to the store head-to-tail. An alternative method is to place each subroutine
into a definite place in the store by means of a control combination of the form
T m K. If this method is used, the make-up of the tape is as follows:

~
space

P K T 72 K

~
space

P K T 108 K

~
space

(If spaces are not required the P K' s
may be omitted.)

48

P K T 144 K

jR3j

space

P K T 185 K
G K
T 45 K
A 258 D
P 20 F
p 47 0
P3104 F

jPllj

space

P K T 240 K

ELECTRONIC DIGITAL COMPUTER

I Master routine I
space

P K E 240 K P F
1234 +
986 +

742 81079 +
843 14763 +

1 -

This method of making up a tape puts the subroutines into the same lo­
cations as the previously described method. A few spare locations can, how­
ever , be left between the subroutines if desired. This reduces the possibility
of error arising because of a miscalculation of the locations required by a
subroutine and enables corrections involving a slight increase of length to be
made to a subroutine without renumbering. Such corrections often must be
made to subroutines which have been specially constructed for the program.

Another method of making up a tape for a complete program is exempli­
fied in Section 7-3.

7-2 Example 2. Calculation of 1r by evaluation of definite integral.

The formula chosen is i 1r = foh + x2f 1 dx. In order that all numbers

concerned in the calculation shall be less than unity this must first be written
in the form

1/2 " I 3/16
10 = 0 {15/16)(0.25+ x2) dx.

Evaluation of the integral is carried out by subroutine Q2, which re­
quires an auxiliary subroutine to calculate the integrand. This must be so
designed that it evaluates the integrand for the value of x given by C(OD) and
places it in OD; it is called into use by Q2 as required. The auxiliary subrou­
tine is given in full in Section 7-23. It requires a division subroutine, and the
one chosen is D6.

EXAMPLES 49

The program requires two other subroutines, R9, which is used by Q2,
and Pl, which is used to print the result, which consists of one ten- digit num­
ber.

7-21 Make-up of tape.

IR91

space

P K T 72 K

I Master routine!

space

P K T 96 K

/Auxiliary subroutine /

space

P K T 112 K
G K T 45 K

P 9 2 D (H parameter)
G 96 F (N parameter)

~

space

P K T 164 K

IP11
space

P K T 185 K

/o6j
E 72 K P F

7-22 Master routine.

Start- 0
1
2
3
4
5

G K
0 15 9
0 13 ()
0 14 ()
T 20 1r 6
A 19 9
T 22 1r6

R9 begins with P K T 56 K, so that it is
automatically placed in locations 56-70.

Sets transfer order so that master routine
goes into store starting at 72.

Auxiliary goes into store starting at 96.

Q2 goes into store starting at 112.
Sets transfer order so that following para­

meters, required by Q2, go into 45 and
46.

Q2 begins with T Z, so that transfer order
is reset after planting of parameters.

P1 goes into store starting at 164.

D6 goes into store starting at 185.

When this control combination is read con­
trol is transferred to the order in 72,
that is, to the beginning of the master
routine.

figures
carriage return J (see note 5)
line feed

J Sets limits of integration: 0 to 207r6,
1/2 to 227r9, (Note: started with accumu­
lator clear.)

50 ELECTRONIC DIGITAL COMPUTER

6 A 6 () J calls in Q2, which places integral in OD.
7 G 112 F

Q2-8 A 8 () J calls in P1, which prints integral.
9 G 164 F

10 II P 10 F parameter for Pl.
P1-11 0 15 () extra output order to print last figure.

12 z F
13 () F carriage return
14 L1 F line feed
15 1r F figures
16 K 2048 F 15·2-4

17 R F 4·2-4

18 E F 3·2-4

19 I F 8·2-4

20 (P F) J set by 3
21 (P F)
22 (P F) J set by 5
23 (P F)

7-23 Auxiliary subroutine

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

D6-15

Notes:

G
A
T
H
v
A
y
T
H
v
y
T
A
T
A
G

(Z

3
15

17

16

4
18

13
185

K
F
()

D
D
M
F
D
M
0
F
0
M
0
()

F
F)

plant link

J x2

0.25 + x2 to OD

15/16·(0.25 + x2) to 40

3/16 to 00

J calls in 06, which places integrand in
00.

link

1. If spaces are not required the P K's may be omitted.
2. The mechanism of the teleprinter output system is such that an 0

order sets up on the printer the character next to be printed and at the same
time prints the character set up by the previous 0 order. Thus, at the end of
a program an extra 0 order must be supplied in order to print the final charac­
ter. Some print subroutines do this automatically by printing one or more
spaces after each number. P1, used in this program, does not, and an extra
0 order is therefore supplied in the master routine.

3. "Carriage return" must precede "line feed," since it takes longer
than the time required for other teleprinter operations.

EXAMPLES

4. The master routine must start at an even location, since locations
20 6 and 216 are combined to form one long storage location.

7-3 Alternative method for Example 2.

51

The example given in Section 7-2 will now be repeated in a revised form
making use of assembly subroutine Ml. The components of the program are

H sequence,
Master routine,
Auxiliary subroutine,
Library subroutines R9, Q2, Pl, and D6.

R9, however, is not dealt with by Ml but is automatically placed in its usual
position (locations 56-70). The H sequence consists of a number of pseudo­
orders which, in Section 7-2, were included at the end of the master routine.

Storage space is allocated as follows:
56-70 R9
71-75 unused

76 reference order for master routine

]
see 77 do. auxiliary

78 do. Q2 Section
4-62 79 do. Pl

80 do. D6
82-97 Ml
98- H sequence

7-31 Make up of tape.

JR9J

space

P K T 82 K
JMlj
P 76 F

T 98 K

space

PZGK
E 82 K T F

I H sequence!

space

PZGK
T 92 K T¢1
E 82 KIF

R9 begins with P K T 56 K, so that it is
placed in locations 56-70.

First order of Ml goes into 82.

Reference order of master]
routine goes into 76. parameters

First order of H sequence used by Ml
goes into 98.

Calls in Ml, which places P 98 F in 45.

Placed with first order in 98.

Sets Ml ready to deal with master routine.
Calls in Ml, which places reference order

in 76.

52 ELECTRONIC DIGITAL COMPUTER

I Master routine I
space

PZGK
E 82 K P F

!Auxiliary I
space

PZGK
E82KPF

T45 K
P 72D
G 1 tP

~
space

PZGK
E82KPF

space

PZGK
E82KPF

lo61
E 25 K
Et,6PF

7-32 H sequence •

H 0 .1
1 6
2 K
3 R
4 E
5 I
6 1f'

2048

7-33 Master routine.

G
start -o 0 6

1 0 1
2 0

F
F
F
F
F
F
F

K
H
H
H

Calls in M1, which places reference order
in 77.

Calls in M1, which places reference order
in 78.

J Plants parameters required by Q2.

Calls in M1, which places reference order
in 79.

Calls in M1, which places reference order
in 80.

J Sends control to the first order of the
master routine.

line feed
carriage return
15·2-4

4·2-4

3·2-4

8·2 .. 4

figure shift

figures
carriage return
line feed

3
4
5
6
7

Q2- 8
9

10
P1-11

12

T
A
T
A
G
A
G

liP
0
z

72 D
5 H

74 D
6 (J

2 q,
8 (J

3 q,
10 F
6 H

F

7-34 Auxiliary subroutine

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

06-15

G
A
T
H
v
A
y
T
H
v
y
T
A
T
A
G

IZ

K
3 F

15 (J

D
D

3 H
F
D

2 H
D
F

4 D
4 H

D
13 (J

4 q,
FJ

EXAMPLES

J Sets limits of integration: 0 to 720,
1/2 to 74 D.

J calls in Q2.

J calls in Pl.

parameter for Pl.
extra output order to print last figure.

plant link

x2 to accumulator
4·2-4 + x 2

0.25 + x2 to OD
15·2-4

15/16·(0.25 + x2) to 4D

3/16 to OD

J Calls in D6, which places the integrand
in OD.

link

7-4 Example 2, with extra print orders for checking.

53

The example of Section 7-2 is given below in a modified form in which
extra print orders are included as described in Section 5-21. The letters
printed by the orders preceding the various subroutines are as follows: A for
the auxiliary, Q for Q2, P for Pl, and D for 06. These letters are stored in
locations numbered, for convenience, with respect to the code letter M. In
addition, an order which operates the letter-shift of the teleprinter is included
in front of Q2 (the subroutine operated first), and an order which puts it back
on to figures is included in front of Pl.

This example will print the following:

QADADADADADP3141592653

7-41 Make-up of tape.

IR9I
T47 K
P 228 F (M parameter)

space

54 ELECTRONIC DIGITAL COMPUTER

P K T 72 K

I Master routine I
space

P K T 96 K
OM

I Auxiliary subroutine I
space

P K T 114 K
04M
01M
G K T 45 K
P 90 D (H parameter)]
G 96 F (N parameter)

~
space

P K T 168 K
02M
05M

IP11
space

P K T 191 K
03M

ID6j
space

P K T 228 K
OM A F
1 QF
2 PF
3 DF
4 K 2048 F
5 1 1T F

E 72 K P F

Print A. This order goes into 96.

Auxiliary starts at 97.

Letter shift J extra print orders in 114
Print Q and 115.

Parameters for Q2.

Q2 starts at 116.

Print P J extra print orders in 168
Figure shift and 169.

P1 starts at 170.

Print D. This order gnes into 191.

D6 starts at 192.

Denotes auxiliary] C d 1 tt t b Denotes Q2 o e e ers o e
Denotes p 1 printed by the extra
Denotes D6 print orders.
Letter shift
Figure shift
Transfers control to the master routine

7-5 Application of checking subroutine Cll to Example 2.

Cll calls for a small alteration to the original tape of Section 7-21. It
is merely necessary to remove the control combination at the end of the tape
and replace it by C11. The point of entry into the master routine is now spe­
cified by an E order at the end of the tape, following Cll. In this example it
is necessary to avoid the first order of the master routine because this order
causes a figure shift, and the teleprinter is set by C4 to print letters. Hence
the tape is terminated byE 73 F. The end of the tape appears thus:

EXAMPLES

Ins!
1c111
E 73 F

55

The first few rows of printing produced by this tape would be as follows.

Printed by teleprinter

0
TATAG

ATTSAUATAHVYTAG
ATHVAYTHVYTATAG
A TSETSE
SE
LE
TAL TALE
TALTALERULATE
HSNAYG
UNATHSNAYG
UNATHSNAYG
UNATHSNAYG
UNA THSNA YGSVTE
E
HVAYTASG
AUATAHVYTAG
ATHVAYTHVYTATAG
ATSETSTE
SE
LE
TAL . . . etc.

7-51 Notes:

Corresponding orders

master routine
master routine

Q2
Aux.
D6

Aux.
Q2

Aux.
D6

1 and 2
3 to 7
0 to 14
0 to 14
0 to 7
2 and 3

13 and 14
8 to 14
8 to 20

25 to 30
21 to 30
21 to 30
21 to 30
21 to 34

15
15 to 22

4 to 14
0 to 14
0 to 7
2 and 3

13 and 14
8 to . . .

1. The carriage return and line feed at the beginning of the master
routine each affect the te leprinter after the corresponding " 0 " has been
printed. The result of this is that both O's are printed in the same position
on the paper, and the following letters on the next line.

When P1 is reached, the decimal digits which it sends to the teleprinter
will be printed as letters immediately after the " 0" indicating the print order
in Pl. They will not, however, be the digits obtained in the original example,
because Pl employs the F order and therefore fails when Cll is used.

2. The exact number of repetitions of the groups of orders 8 to 14 a nd
21 to 30 of D6 depends on the numbers operated upon. The above example
shows a probable course of the calculation.

56 ELECTRONIC DIGITAL COMPUTER

7-6 Example of integration of an ordinary differential equation.

7-61 Statement of problem. The equation considered is

dy y(1+2y-4x)
dX = x(y-x+N) '

where N is a constant. This equation occurs in theoretical astrophysics.
In the vicinity of the origin, a solution for any given value of N has the

behavior y = (Bx)1;1l , where B is arbitrary. Solutions are required for a set
of values of N and, for each value of N, for a set of values of B. Each solu­
tion is to be tabulated at an interval of 0.01 in x until either y>1 or dy/dx<-1,
values of y being correct to five decimals.

7-62 Method. The formula for dy/dx is formally indeterminate at x = 0,
so that it is necessary to start the numerical integration from some small
value x o of x, at which the value Yo of solution y can be evaluated from a series
expansion. This starting point was taken as xo = 0.01; the corresponding val­
ues of y0 for different values of B were calculated separately and furnished to
the machine as part of the number input. The program is so arranged that the
machine evaluates automatically the whole set of solutions for a given value of
Nand different values of Yo·

An input subroutine is required to take in the values of x 0 , N, and the
set of values of Yo for which solutions are required. Subroutines for step-by­
step integration of a first-order differential equation and for printing are also
required. The subroutines used are R3, G1, and Pll. G1 requires an auxili­
ary subroutine for calculating 2mh(dy/dx), and this auxiliary subroutine has to
be programmed in detail; it involves a division process and for this D7 is
used. Assembly subroutine M1 is used to organize the various subroutines in­
to a complete program.

7-63 Allocation of storage locations. Locations OD, 4D, 6D are used by
D7, Pll, and R3; they are also used by G1, which in addition requires six stor­
age locations for y, x, 2mh(dy/dx), 2mh, 2mq1 and 2mq2 (ql and q2 being inter­
mediate quantities calculated in the course of the use of G1). These have been
taken as 10D, 12D, ... , 20D. Storage for N, x0 , and a round-off number are
provided at 22D, 24D, and 26D.

7-64 Auxiliary subroutine. This subroutine must put

2mh dy _ 2mh y(1 + 2y - 4x)
dx - x(y - X + N)

into location 14D. The quantities x andy are in the range (0,1) and, for the
solutions required, N and ~h are less than 1. However, 4x may exceed unity,
so we must introduce a scaling factor 2-2 and calculate

~h y(0.25 + 0.5y - x)
x(0.25(y-x) + 0.25N)

The sequence of operations by which this quantity is evaluated must be
planned with care, to ensure that all intermediate quantities remain within the
capacity of the accumulator. The method adopted is to test whether I y(0.25 +
0.5y-x)i > x(0.25(y-x) + 0.25N). If this condition is satisfied, the multiplication

EXAMPLES 57

of the numerator by 2mb is done first and is followed by the division. If the
condition is not satisfied, the division is carried out first and the result is
multiplied by 2mh. The reason for this procedure is as follows. If two small
quantities are multiplied and give a product less than 2-34 , this appears as
zero, and subsequent division by a small number will still give a zero result
although the correct result may be much greater than 2-34 • Hence in calculat­
ing ab/c, it is advisable to carry out the division first if lb/cl<l.

7-65 Master routine. This is straightforward, and stops the integration
when either y2:1 - 2 34 or (dy/clx)<-1. The value of x for which the integra­
tion is stopped is printed in brackets at the end of the table of results.

7-66 Mathematical checks. These are required to verify that the inter­
val is small enough for the step-by-step integration process and that the solu­
tion is stable despite rounding-off errors. These checks are not programmed
but must be carried out by hand outside the machine. Checks used are the
evaluation, at selected points, of (dy/dx) from the differential equation and also
from a central-difference formula. Further, results for one special case,
namely N = 0.4, xo = 0.074515, Yo = 0.049793, can be obtained from the tabu­
lated solution of Emden' s equation. When this problem was run on the EOSAC,
agreement with these results to the required degree of accuracy was obtained.

7-67 Master routine.

0
1

R3- 2
3
4
5

R3 - 6
7
8
9

R3-10
11
12
13

R3 - 14
15
16
17

56-18
19
20
21
22
23
24
25

G
A
G
A
T
A
G
A
T
A
G
A
T
A
G
A
R
y
T
A
T
A
A
T

(P
A
G

K
9

44--
0

16 0
4 9
4 ¢

0
26 0

8 9
4 ¢

0
24 0
12 9
4 ¢

0
1 F

F
22 0
24 0
12 0

5 ¢
H

23 9
F)

24 9
4 ¢

J call in R3' to read 23h

J 23 h to 160

I
I J

read round-off constant
and send to 260

J
read

read x0 and send to 240 constants

J read N

I

J
1

send 4 N to 220

J reset x to xo

J rtto evaluate
form order 23** print one solution

new of equation
becomes T q+20 F block*

J read next Yo

58 ELECTRONIC DIGITAL COMPUTER

R3-26
27
28
29
30

27-31
32
33

47-34
35
36
37
38

Pll-39
40

Gl-41
42
43
44
45
46
47

43-48
49
50
51
52
53

Pll-54
55
56

I

A
E
T
0
z
T
T
T
T
A
T
A
G
A
G
A
A
G
T
A
A
E
T
A
T
0
A
G
0
0
E

0
31 (}

F
H
F J

10 0
18 0
20 0

F
10 0

0 J
37 (}

5 rl> J
39 I:J

3 rl> J
10 0

2rrH
48 (} J

F
14 0
16 0
34 (} J

F
12 0

0 J
1 H

52 (}

5 rl> J
4 H
6 H

18 9

*see Pll, note 7 (Part ll).

Yo to accumulator

stop if Yo< O

set y =Yo
clear 180
clear 200
clear ace .

y to OD J prlnt y

call in Pll

call in Gl
one step of

jump to 48 if integration

y 2.1 - 2-34

clear accumulator

return to 34 if
y'2_-1

clear accumulator

x to 00

print (l print (x)
call in Pll

print)
line feed
return to 18

evaluate
one solution
of equation

**C(5¢) = G q F (if Pll starts in q), C(OH) = J 20 F. Thus C(5¢) +
C(OH) = (G + J) q + 20 F = T q + 20 F.

7-68 Auxiliary subroutine. Puts 23 h(dy/dx) in 140 where

dy y(0.25 + 0.5y - x)
ax = x(0.25(y-x) + 0.25N)

G K
0 A 3 F J plant link
1 T 46 9
2 A 10 0

l
3 s 12 0
4 R 1 F 1 1
5 A 22 0 4(y-x) + 4 N to OD

6 y F
7 T 0

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

22-25
26
27
28
29

07 - 30
31
32
33
34
35

26-36
37
38
39
40
41
42

07-43
44
45

35- 46

H
v
y
T
A
R
s
A
y
T
H
v
y
u
E
T
s
s
E
T
A
G
T
H
v
y
T
E
T
H
v
y
T
A
G
T
A
T

(Z

12 0
0
F

4 0
10 0

0
12 0

5 H
F
0

10 0
0
F
0

25 9
14 F

0
4 0

36 9
14 F
28 9

2 q,
4 F

16 0
0
F

14 0
46 9
14 F
16 0

0
F
0

41 9
2 q,
4 F

0
14 0

F)

EXAMPLES 59

J denominator to 40

l 1 1 '4 + 2"y- x to 00

J numerator to 00

J modulus of numerator to accumulator

subtract denominator *
jump if ldy/dx l.2.1
clear accumulator

J call in 07 to
form (dy/dx)

clear accumulator

J
23h(dy/dx) to ldy/dxl<1

14 0

to link
clear accumulator

J
multi{.lly numerator

by 23h

J call in 07 to form ldy/dxl.?1

23 h(dy/dx)
clear accumulator

J 23 h(dy/dx) to 140

link order

* In the range considered, the denominator is always positive.

7-69 H sequence, make-up of program and number tapes. H sequence:

T 27TZ
2

liP (See Chapter 2 under the heading sandwich
3 F

T z digit.)

0
II~ 20 F

1 F

60 ELECTRONIC DIGITAL COMPUTER

2 II P 3
T

D

4 z
F
F
F

2-34 (See Chapter 2 under the heading
sandwich digit.)

)
= 1/4
line feed

Make-up of program tape:
P K T 60 K
I Mll
P 52 F
T 76 K

space

PZGK
E 60 K T F
I H sequence I
space

PZGK
T 70 K Tt/J
E 60 KIF

I Master routine I

space

PZGK
E 60 K P F

!Auxiliary subroutine I

space

PZGK
E 60 K P F
ID71
space

PZGK
E 60 K P F
G K T 45 K
P 12 D
P4F
P4F
P4F
P2F
Plt/J
IG1I

space

PZGK
E 60 K P F
IR31

] prosot paramotm for G1

space

PZGK
E 60 K P F
G K T 45 K
A 26 D
P 25 F
p 45 (j

P 1552 F
!PHI

Make-up of number tape:

P K E 25 K
Et/>PF

08 +
00000000005 +

01 +
4+

. etc.

1 -

EXAMPLES

23 h
round-off
x o
N
yo first value
Yo second value

Yo last value
stop

7-7 Evaluation of a definite integral.

61

numbers

7-71 Statement of problem. The following integral, which occurs in the
theory of the ionization of an exponential atmosphere by solar radiation, is to
be tabulated as a function of X and x for X= 90°(-1°)50° and x = 200(20)280.
The table is to be printed in five columns, each giving values of the integral
for a fixed value of x.

lx { sin>..- sinX} 2
0 exp -x sin A. cosec A. d A..

7-72 Method. The integral is written in the following form, in which
all quantities to be handled in the machine are numerically less than unity:

where

-l0
e-24u cosec2 A.dA.

X '

1 . 1 . ' x 2 s mX - 2 smr..
u = 24 1 . 1

2 smr..

The integration is performed by Simpson's rule, using subroutine Ql. The
following subroutines from the library are also used: E3, Pll, T7, and D7.
In addition a master routine, and a subroutine for computing the integral need

62 ELECTRONIC DIGITAL COMPUTER

to be constructed specially. The integrand rapidly becomes small as A. de­
creases, and the integration is stopped by a conditional operation in the aux­
iliary subroutine, which returns contol to the master routine when u exceeds
a certain quantity (see note 4 to the specification of Q1 in Part II).

7-73 Constants: N sequence.

ON p 200 F starting value of x ·2- 15

1 p 20 F increment of x·2- 15

2 (P 200 F) current value of x·2- 15

3 (P 900 F) current value of 1 OX ·2- 15

4 p 10 F negative increment of X
5 p 510 F final value of X plus 1
6 p 5F
7 (P F) column counter
8 K F 14.2-4
9 p 19 F

In addition, two long numbers are taken in by subroutine R5 and placed in 60D
and 620.

7-74 Master routine.

Start, 30-0
1

20-2
3
4
5
6
7
8

Q1 9
10
11
12

P11---13
14
15
16
17
18
19
20

15-21
22
23
24
25
26

G
s
T
A
T
A
G

II(~
s
T
A
G
A
A
E
T
A
A
T
E
A
s
u
s
E
z

6
7
3
6
4
2

5

11
4
7
2

21
7
2
1
2
2
3
4
3
5

27

K
N
N
N
()

()

<P
F)
F
F
H
D
()

<P
N
F
()

N
N
N
N
()

N
N
N
N
()

F

plant column counter

plant current value of X

]calls in Q1, which places integral in OH.

current value of X
strip width
upper limit of integration

integral to OD

J calls in P11, which prints value of integral.

J column count

jump after 5th column

]increase x

accumulator empty: jump to 2 8.

]increase X

test for end
Stop

25-27
28
29
30

T
A
T
E

EXAMPLES

F clear accumulator

2 : J reset x

9

7-75 Auxiliary subroutine.

0
1
2
3
4
5
6
7
8

T7- 9
10
11
12
13
14
15
16
17

T7-18
19
20
21
22
23
24
25
26

07-27
28
29
30
31
32
33
34
35
36
37
38
39

E3-40
41
42

G
A
T
H
v
L
y
T
A
G
A
T
H
v
L
y
T
A
G
A
T
A
s
T
A
T
A
G
A
L
T
H
N
L
u
A
G
T
H
A
G
A
R
T

K
3 F

51 9
62 0

0
8 F

F
4 0
7 9
5 rp
4 0
2 H

62 0
3 N
8 F

F
4 0

16 9
5 rp
4 0
4 H
2 H
4 H

0
2 H
4 0

25 ()

6 rp
N

8 F
4 0
4 0

0
16 F

6 H
8 N

52 ()

F
6 H

38 ()

3 rp
0

1 F
0

plant link
(7T/180)·(2 9 /10~ to register
10>..·(7T/180H2 /10) to accumulator

J ~>..(radians) to 40

J calls in T7, which places ~sin>.. in 40

~sin>.. to 2H

10X·(7T/180)·(2 9/10) to accumulator

i X (radians) to 4D

J calls in T7, which places ~sin X in 40

1
2sinXto 4H

J ~sin X- ~sin>.. to 00

J isin>.. to 4D

J calls in 07, which places
(0.5 sin X - 0.5 sin>..)/(0.5 sinX) in 00

x·2- 15 to accumulator

X·2- l0

-x [(sin X- sin >..)/ (sinX)]2- 10 = -2-6u

-u to 6H
14·2 - 4 - u in accumulator

clear accumulator

J calls in E3, which places e - 24u in 00

J ~e-24u in 00

63

64

43
44
45
46
47
48
49
50

07-51
35-52

53
54
55
56

Notes:

ELECTRONIC DIGITAL COMPUTER

H
v
L
N
y

T
A
G

(Z
T
A
A
T

(Z

2 H
2 H
1 F
2 H

F
4 0

49 (}
6~

F)
F

51 (}

9 N
56 (}

F)

J ~sin 2 >-
sin2>- 1
sin2>- - 4 sin2>-

£sin2A. to 4D

J calls in 07, which places je-24u cosec2 in 00

link (E m+2 F)

J plants E """ F in 56 If 2'u>14

becomes E m+21 F. Returns control to
master routine via link order of Ql (see
note 1).

1. When 24u exceeds 14 the auxiliary subroutine causes control to re­
turn to the master routine via the link order of Ql. When assembly subrou­
tine Ml is used this is more convenient than returning control directly, since
it avoids the necessity for more than one entry point in the master routine.

2. It will be noted that in the auxiliary subroutine all the intermediate
quantities are placed in separate storage locations. Some of these could be
written over others, but by placing each in a separate location it is much
easier to arrange for them to be printed out should this be desirable when
looking for errors in the program.

7-76 Make-up of tape.

PKT64K

IRs!
T 620
07758 06398 +

500000 +

XTZ

IM11
P 50 F
T 80 K

space

PZGK
E 64 K T F

R5 is used to take in two constants and is
afterwards overwritten

Conversion factor (degrees to radians)
29rr/1800; goes into 620.

Round-off number 5·10- 6 ; goes into 600
(these numbers appear backwards on this
tape; see specification of R5, Part II).

G 16 K

E64KTF

JN-sequencej

space

PZGK
T 74 K Tcp
E64KIF

I Master routine I
space

PZGK
E64KPF

JAuxiliary subroutine!

space

PZGK
E64KPF
T 46 K
P1cp

[§!]
space

PZGK
E64KPF
T 45 K
P4F

~
space

PZGK
E 64 K P F
T 45 K

] A 60D
P 25 F
p 46 6
P 1024 F

I PHI

space

PZGK
E 64 K P F

EXAMPLES 65

This causes spaces to be left in the s tore
for 8 long numbers which can be referred
to by the addresses OH, 2H, . . . , 14H (see
note 5 in Section 4-62) .

N parameter for Q1; the H parameter has
already been set by the assembly subrou­
tine.

Parameter for E3.

Parameters for Pll.

66

space

PZGK
E 64 K P F

lD7j
E 25 K
Eif>PF

ELECTRONIC DIGITAL COMPUTER

This program contains a little over 300 orders and pseudo-orders; of
these only 98 need to be drawn up specially.

7-8 Program to facilitate the solution of algebraic equations.

In Graeffe's method for the solution of the equation

G s-1 s
0 = a 0 +a1x+ ...• a 8 _ 1 x +a8 x = 0,

whose roots are A1, A2 •.... A8 , an equation Gm = 0 having roots A i, At .•.
t..] is formed (t =2m where m is an integer). The program given below is de­
signed to calculate the coefficients of Gm = 0. The subsequent numerical anal­
ysis necessary to find the roots must be performed independently and will pro­
ceed along lines which can only be determined after inspection of the coeffi­
cients of Gm = 0.

The program uses the floating decimal subroutines Al, A2, and A4 and
involves four tapes.

1. Input program tape. This puts into the store a short program which
causes the coefficients (punched on the following tape) to be read and placed
in 300D, 302D, ... (300+2s)D. When all the orders on this tape have been read
the machine is stopped by pressing the stop button, blank tape being under the
reading head.

2. Coefficient tape. This tape is placed in the tape reader when the in­
put program tape has been read, and the machine is restarted by the reset
button. If desired it may be combined with the input program tape.

3. Master tape. This is taken in by pressing the start button again when
the coefficients are in the store. It first causes the coefficients of G1 = 0 to
be computed and placed in (302+2s)D, (304+2s)D, ... (300+4S+2)d. The coeffi­
cients of ~ = 0 are then computed and placed in the locations formerly occu­
pied by those of Go = 0. This process continues, the two sets of locations be­
ing used alternately until the coefficients of Gm = 0 have been computed. The
machine then stops and two sets of coefficients (those of Gm_ 1 = 0 and Gm = 0)
are available for printing out.

4. Printing-out tape. This is placed in the tape reader when the machine
has stopped and the start button is pressed again. The coefficients of G m- 1 = 0
and of Gm = 0 are printed out in a single column of 2s+2 numbers.

Notes:

1. The program is drawn up in such a way that it can be adjusted to any
value of s by giving a suitable value to one of the parameters at the head of the
input program tape.

EXAMPLES 67

2. If, after the results have been printed out, it is desired to carry the
root-squaring process further, the master tape, modified by punching P K T
49 K P 2s Fat its head, may be inserted a second time. The coefficients of
G 2m-l = 0 and Gzm = 0 will then be computed and may be printed out by means
of tape 4.

3. If sufficient storage space is available, it is possible to combine
tapes 1, 3, and 4.

in.)

7-81 Make-up of input program tape.

p F
T 50 K
G K
T 49 K
P 2s F
T 45 K
P 300 L
P 2 L

~

L parameter

equivalent to P 300+2s F; H parameter
equivalent to P 2S+2 F; N parameter

7-82 Make-up of coefficient tape.

p K

J E 51 K
z F

control combin.1.tion initiating the program

a s
a s-1
a s-2
a s-3

7-83 Make-up of master tape. (P 2s F is in 49 when this tape is taken

p K
T 200 K
G K
T 45 K
p 300 F H parameter
p 302 L N parameter
p L M parameter
p 50 F ..1 parameter

T 50 K

68

IA41
T 280 K

E
p

z
F

ELECTRONIC DIGITAL COMPUTER

control combination switching control to first
order of master routine.

7-84 Make-up of printing-out tape. (P 2s F is in 49 when this tape is
taken in.)

p K
T 50 K
G K

-50 A 49 F J these orders are stored temporarily in 50 to 51 L D
52 T 49 F

53 and place P 4s F in 49 (L parameter).

53 E 25 F returns control to initial orders.
E 50 K J switch combination p F
T 45 K
p 302 L H parameter
p 4 L N parameter
p 1 F M parameter
p 8 F .1 parameter
p F L parameter

IA2j

E 1 z J tape combination initiating printing
p F program.

Note: P 4s F will not be in 49 after this tape has been taken in.

7-85 Master routine.

G K
0 s 16 () J set count of squarings 14-1 T 33 F
2 T 10 D J clear floating decimal accumulator 3 T 9 F
4 A 4 () J switch to auxiliary subroutine 5 G 200 F

Aux.-6 A 266 F

l 7 T 34 F interchange roles of P u D and P v D in
8 A 267 F
9 T 266 F

locations 66() and 676 of auxiliary sub-

10 A 34 F routine.

11 T 267 F
12 A 33 F J test for s squrings 13 A 2 F
14 G 1 ()

15 z F
16 liP 6 F squaring count

EXAMPLES 69

() 7-8y _!?~sfrlptio~ ~f the auxiliary subroutine. Given the coefficients
a 0° , af0 , a 2° , •.. , a 5° , of an equation G0 , in loca~Qns (~+)2r)~if = 0, 1C f'
the subroutine computes and places the coefficients a 0 ! , a).1 , a 2 , ... ,a /
of the equation G1, in locations (v+2r)D, r = 0, 1, . •. s. The a~ l) are defined
as follows:*

2 .

[(o) J - 2 f (-1)r-1 (o) (o)
a n r=1 3.TI+r a n-r

(1)
a n = (i)

where j = n if n~s-n
j = s-n if n>s-n.

7-87 The auxiliary subroutine. Closed; 80 storage locations; working
positions 30, 31, 32. Preset parameters :

G K
T 45 K

45 H P u F
46 N P v F
47 M P 2s F
48 .1 P w F

0
1
2

64- 3
4
5
6
7
8
9

10
11
12
13
14
15
16

77-17
18
19

T Z
A 3 F
T 65 0
s 71 0
A 71 0
U 30 F
A 66 0
u 40 0
u 41 0
u 55 0
T 56 0
A 30 F
A 67 0
T 61 0
S 30 F
S 30 F
A 70 0
E 76 0
A 30 F
T 32 F
T 20 D

s is the degree of the equation
address of first order of A4

J plants link

J

l
J
J

set n=O initially

n·2- 14 to 30

these orders plant P U+2n D in 40 0, 41 0,
550, and 560 .

P V+2n D is formed and planted in 61 0.

(s-2n)2"" 14 to accumulator

jump if n~s-n

J P 2j F is planted in 32

clear 200

*See for example Whittaker and Robinson, pp. 106-109, 3rd edition (1940),
Blackie. It is more convenient to use the relation (i) in the form

a~ 1) = [a~o)y + 2(-l) j Pj ,

where Pj is the jth term of the sequence

70

20
21

49-22
23
24
25
26
27
28
29
30
31
32
33
34

79-35
36
37
38
39
40
41
42
43
44
45
46

21-47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

T
E
A
A
T
A
A
T
A
s
T
s
E
T
A
A
T
A
G
E

(P
(P
E
p
p
E
p

A
s
G
A
T
A
G
E

(P
(P
E

(P
p
E

(P
A
s
G

(E
p
p
p

(P

ELECTRONIC DIGITAL COMPUTER

31 F
47 9
32 F
68 9
31 F
40 9
68 9
40 9
40 9
68 9
40 9
69 9
78 9
69 9

2 F
75 9
58 9
37 9

L1
3 L1

F)
F)

3 L1
72 (}
20 D
13 L1
20 D
31 F
32 F
22 9
68 9
69 9
52 9

L1
3 L1

F)
F)

3 L1
74 9)
20 D
13 L1

F)
30 F
70 9

3 9
F)

7TH
1TN

2 F
2 F)

clear 31
jump to 479 J modify counter; r.2- 14 to 31

J form and plant P U+2n+2r D

J form and plant P u+2n-2r D

test m, the two-way switch
jump if r is even
restore two-way switch

J Plants P 74 9 in 589 if J plants P 73 9 in r is odd.
589 if r is even.

J enter A4

J an..-r ·:ln-r to floating decimal accumulator

J -Pr-1

J Pr to 20D

J test for r = j

J reset two-way switch

J enter A4

J form [a A 0 ~2 in floating decimal accumulator

J +2(-l) j pj

plant a~ 1) in (v+2r)D

J test for last coefficient

link
becomes P u D
becomes P v D

two-way switch

70
71
72
73
74
75

16-76
77

32-78
79

p M
P 2M
V 2040 F
P 16 F
V 2032 F
p 73 9
T F
E 17 9
T 69 9
E 35 9

EXAMPLES

becomes P 2s F
becomes P 2S+2 F
= -1 in floating decimal representation
=+2
=-2

71

J control switched to these orders if n~s-n

J control switched to these orders if r is even
control being returned to 359 so that P 73 9

is planted in 589. This corresponds to tak­
ing 2(-1)r = +2. When the last product is
formed r = j and 2(-1 }i is in location 73 9
if j is even, and 7 4 9 if j is odd.

PART II

SPECIFICATIONS OF LIBRARY SUBROUTINES

Each subroutine is distinguished by a letter denoting its category and a
serial number within that category. The categories are as follows.

Category

A
B
c
D
E
F
G
J
K
L
M
p

Q
R
s
T
u
v

Subject

Floating point arithmetic.
Arithmetical operations on complex numbers.
Checking.
Division.
Exponentials.
General routines relating to functions.
Differential equations.
Special functions.
Power series.
Logarithms.
Miscellaneous.
Print and layout.
Quadrature.
Read (i.e., Input).
nth root.
Trigonometrical functions.
Counting operations.
Vectors and matrices.

In the specifications on succeeding pages the following information is
given in abbreviated form immediately beneath the title of each subroutine:

1. Type of subroutine, i.e., whether open, closed, interpretive, or
special.

2. Restriction on address of first order. If the word "even" appears
it denotes that the first order must have an even address; if no note appears
it indicates that the address may be either odd or even.

3. Total number of storage locations occupied by the subroutine.
4. Addresses of any storage locations needed as working space by the

subroutine.
5. Approximate operating time (not possible to state in all cases).

The gaps in the numbering within each category correspond to subrou­
tines which have become obsolete.

72

SPECIFICATIONS OF SUBROUTINES 73

A. Subroutines to carry out floating point arithmetic.

A1 Input of a sequence of s real numbers in floating decimal form
(used with A3 or A4),
Closed; even; 77 storage locations; working positions OD, 4D, 6D,
and 10D.

Given a sequence of s numbers (>1) punched in floating decimal form, this
subroutine assembles them in a standard form* and places them in nD,
(n+2)D, (n+4)D (n+2s-2)D.

Preset parameters: 45 [H \ P n+2s-2 F
46 N P 2s F

Notes: *1. For further details see Part I , Section 4-82.
2. A typical number X·10P, where 256>p>O and 4 >JXIL0.4, is

punched as: X, sign, p, F. In X the decimal point is immediately after the
first digit punched. Any number of digits up to ten may be punched for X.
More than ten will exceed the capacity of the accumulator.

3. The numerical part of each number is eventually rounded off
to 24 binary places.

A2 Print sequence of s floating decimal real numbers in a preset
layout (used with A3 or A4).
Closed; even; 111 storage locations; working positions OD, 4D, 8.

Prints the sequence of s numbers packed in floating decimal form in storage
locations nD, (n+2)D, (n+4)D (n+2s-2)D. Layout: numerical part printed
to d digits preceded by sign and followed, after one space, by the positive*
integral exponent (up to five figures with suppression of nonsignificant zeros).
Two spaces separate columns of complete numbers. Decimal point in numeri­
cal part is after first digit printed.

Preset parameters: 45 H P n+2s-2 F
46 N p 2s F
47 M p c F number of columns ($.4)
48 .1 p d F number of digits
49 L p x F/ D = q-2-16

Notes: 1. Teleprinter must be on figure shift.
*2. A2 prints out positive exponents only. To ensure this pro,ision

is made whereby all exponents may be increased by a preset amount, q, be­
fore printing.

3. No round-off is provided. Any number of figures may be printed.
4. c(d+9) ~ 72.

A3 Special arithmetical operations on real numbers in floating decimal
form,
Closed; even; 126 storage locations; working positions OD, 4D, 6D,
8D, 10D, 12D; time: part 1 = 85 msecs; part 2 = (64+24q) **msecs.

Enables special arithmetical operations to be carried out on real numbers
expressed in standard floating decimal form.* A3 is in two parts and has two
entry points p and P+ 76, where p is the location of the first order. Part 1 is
entered by:

74 ELECTRONIC DIGITAL COMPUTER

m Am F
m+1 G p F

and executes the arithmetical operation: xy + C(A) to A, where A refers to a
floating decimal "accumulator" in the store and x andy are stored in rD and
sD respectively.

Part 2 is entered by:
m A m F

m+l G P+76 F

and assembles C(A) in standard form" which is then placed in tD. r, s, and t
are specified by parameters P r F/D, P s F/D, and P t F/D which may refer
to either long or short floating numbers. These parameters are stored 1n
preset locations.

Preset parameters: 45 1 H I P a F 46 N P b F
47 M P c F

address of P r F /D
address of P s F /D
address of P t F /D

Notes: *1. See Part I, Section 4-82.
2. No more than two "Part 1" operations may be carried out in

succession without following a "Part 2" operation.
**3. q is the number of significant zeros arising from cancelation in

the sum in the accumulator.
4. See Part III for detailed program.

A4 Special arithmetical operations on real numbers in floating decimal
form. Interpretive version of A3.
Interpretive; even; 150 storage locations; working positions OD, 4D,
6D, SD, 10D, 12D; time: part 1 = 100 msecs; part 2 = (80+24q)msecs.

This subroutine consists of A3 preceded by a supplementary subroutine which
enables it to be used with program parameters. Floating point operations
using this subroutine can then be coded as follows:

m
m+1

A m F
G p F calls in A4.

Thereafter, when required, control may be switched to Part 1 (see AS) by

m+2 E P+3 F
m+3 P r F/D*
m+4 P s F/D*

Control will afterwards be returned to m+5, whence a further Part 1 operation
can be called in by another triplet of orders similar to those above or, alterna­
tively, a Part 2 operation may be initiated by

m+5 E P+13 F
m+6 P t F/D*

Control will then be returned to m+7.

*p r F/D, etc., refer to either short or long floating numbers.

SPECIFICATIONS OF SUBROUTINES 75

A5 Special arithmetical operations on complex numbers in floating deci­
mal form.
Closed; even; 206 storage locations; working positions OD, 40 - 180;
time: Part 1 = 150 msecs; Part 2 = (90+31q)* msecs.

Similar to A3 but operates on complex numbers expressed in standard form
(see Part I, Section 4-83). Part 1 carries out the operation

z1z2 + C(A) to A,

where Zl is stored in rO and (r+2)0 and z 2 in sO and (s+2)0. Part 2 assembles
C(.\) in standa:rd form and transfers it to tD and (t+2)0.

Preset parameters: 45 1 H I P a F 46 N P b F
47 M P c F

address of P r F
address of P s F
address of P t F

Notes: 1. Not more than two Part 1 operations may be carried out without
following with a Part 2 operation.

*2. q is the number of multiplications by 10 which are necessary when
assembling the number to bring the modulus within the standard range.

3. A5 is entered in the same way as A3, Part 2 being entered at P+128.
4. See Part III for detailed program.

A6 Input of a sequence of complex numbers in floating decimal form
(used with A5 or AB).
Closed; even; 98 storage locations; working positions 00, 40, 60,
140, 160, 180.

Given a sequence of s complex numbers (>1) punched in floating decimal form,
A6 assembles them in standard form* and places them in nD, (n+4)0, (n+B)O,
... (n+4s-4)0.

Preset parameters: 45 I H I P n+4s-4 F
46 N P 4s F

Notes: *1. See Part I, Section 4-83. L!. l
--- 2. A typical number (X +iY)·10 , where 4>irX~ + Y~~0.4 and
20472.p2.0, is punched as Xo, sign; Y0 , sign; p. In X0 and Y0 the decimal point
is immediately after the first digit punched. Any number of digits up to ten
may be punched for X0 andY 0 ; more than ten will exceed the capacity of the
accumulator.

3. Xo and Yo are eventually rounded off to 28 binary places.

A 7 Print sequence of s floating decimal complex numbers (used with
A5 or AS).
Closed; even; 125 storage locations; working positions 00 and 40.

Prints the sequence of s complex numbers packed in floating decimal form in
storage locations nD, (n+4)0, (n+B)O, ... (n+4s-4)0. Layout: 2 columns of
complete numbers. Each number consists of ± real part, space, ± imaginary
part, space, positive* exponent.

Preset parameters: 45
46
47
48

H P n+4s-4 F
N P 4s F
M P x F/0
L1 P d F

address of last number of sequence
s numbers

2-16
= q.
number of digits.

76 ELECTRONIC DIGITAL COMPUTER

Notes: 1. Figure shift is called during input.
*2. As in A2, provision is made for the addition of a preset amount q

to the exponent of each number before printing.
3. No round-off is provided. Any number of digits may be printed.
4. c(d+9) ~ 72.

AS Special arithmetical operations on corr_plex numbers in floating
decimal form. Interpretive version of A5.
Interpretive; even; 230 storage locations; working positions OD, 4D
to 18D; Time: Part 1 = 165 msecs, Part 2 = 105 + 31q msecs.

This subroutine consists of A5 preceded by a supplementary subroutine which
enables it to be used with program parameters. Floating point operations
using this subroutine can then be coded as follows:

m I Am F
m+1 G p F calls in A8

Thereafter, when required, control may be switched to Part 1 (see A5) by

m+2 1 E P+3 F
m+3 P r F/ D*
m+4 P s F/ D*

Control will afterwards be returned to m+5, whence a further Part 1 operation
can be called in by another triplet of orders s imilar to those above; alterna­
tively, a Part 2 operation may be initiated by

m+5 J E P+13 F
m+6 P t F/ D*

*p r F/ D, etc., may refer to either short or long floating numbers.

A9 Input of a sequence of numbers in floating decimal form during in­
put of orders (used with All) .
Special; even; 31 storage locations.

The numbers are punched on a separate data tape in the following form:
character representing exponent; sign; numerical part (the decimal point
being after the first digit). For example,

512 would be punched as W + 512 or 2 + 512 = lo2(5.12),
-.0012 II II II " B - 12 = 10-3 (1.2).

The fir s t number in the sequence is preceded by Z T X. After the subroutine,
T m D is punched, followed by the data tape which is copied in the reverse
direction. The numbers are then placed in the store in floating decimal form
in storage locations mD, (m-2)D, etc., so that mD is the location of the num­
ber originally punched last.

Accuracy: the numerical pa rt of each number is represented by 23
binary digits - equivalent to almost 7 decimal digits.

Notes: R9 must be in the s tore whim A9 is read.

A10 Print single floating decimal number (used with All).
Closed; even; 63 storage locations; working position, 4D; time =
2 sees per number.

SPECIFICATIONS OF SUBROUTINES 77

Prints the signed exponent followed by the signed numerical part of the num­
ber stored in floating decimal form in OD. Each number is printed as: nega­
tive sign, or space; exponent (2 figures); 2 spaces; negative si.gn, or space;
integer part (1 figure); space; 6 decimal figures.

Accuracy: the number is rounded off to 7 figures (including integral
part).

Notes: 1. If the numerical part is exactly 10 it will be printed as# 000000.
2. The last order on the tape is the digit layout parameter for the

numerical part (as in Pll), and may be altered if required.
3. Normally, before the number is printed, carriage return and line

feed will occur. They may be omitted by entering the routine at its third order.
One space only is printed after each number. Not more than four numbers may
be printed on one line.

All Arithmetical operations on real numbers expressed in floating
decimal form.
Interpretive; even; 128 storage locations; working positions OD*,
and H and N for floating accumulator; time, see Note 1.

Operations: All carries out the operations specified individually by
the program parameters according to the following code:

Program
parameter

A m F/D*

B m F/D*

v m F/D*

T m F/D

E m F

*mS.511

Operation

add to the number in floating decimal accumulator the
number represented by C(m).

subtract from the number in floating decimal accumulator
the number represented by C(m).

multiply the number in floating decimal accumulator by
the number represented by C(m).

transfer the number in floating decimal accumulator to
S(m), and clear the accumulator.

switch control to m with accumulator clear (previous
parameter need not be T).

Representation of numbers. Each number is expressed in the form
a•10P, where a is the numerical part and p the exponent (an intege~l In the
store the number is represented by the long or short number a·2-~ + p·2- 6•

The routine uses positions H (long) and N (short) as a "floating decimal accu­
mulator," or "f.d.a.," in which the above numbers would appear as -a·2- 11

in Hand p·2 - 14 inN.

Range of values: In the f.d.a. IPI<16000 approx. and -2048~<2048. In
the store -63S.p<63 and lal$.10, but when a number is transferred to the store
from the f.d.a. it is always represented in such a way that either 1 < lal$.10, or
a = 0 and p = -63.

Capacity of registers. If a T parameter is read, and the number in the
f.d.a. exceeds 10 6~, the machine will normally come to a dynamic stop. If
this is undesirable, the preset L parameter E 56 0 may be replaced by any

78 ELECTRONIC DIGITAL COMPUTER

E order transferring control to a suitable point in the store in the event of
exceeded capacity (the accumulator not being empty).

If the number in the f.d.a. is less than or equal to 10-63 , a T parameter
will place the representation of zero in the store (0.10-6~.

It is possible to exceed the capacity of the numerical part of the f.d.a.
without the number actually represented by the f.d.a. exceeding the range of
possible values. The rules for avoiding this are as follows. After a T param­
eter, JaJ: 0; an A orB parameter may increase Ia\ by 10, and a V parameter
may multiply Ia I by 10, in the worst cases; hence the sequence of parameters
should be such as to ensure that a can never reach 2048.

Accuracy: when using long numbers, a has between 23 and 27 binary
digits, that is, 7 or 8 decimal digits. When using short numbers, a has be­
tween 5 and 9 binary digits, that is, about 2 decimal digits.

Notes: 1. Times of operation:

Parameter

A
B
T

v
E

Time in sees

.066

.066
,050 + m(.015), where m is the number of deci­

mal shifts necessary to convert the
number to the form required in the
store •

. 050
,012

2. OD may be used as a temporary store only if no A, B, or V param­
eters are used between planting and using; for example,

TD T D
AD

or T 12 D
B D is permissible,

but not T D
A4D
B D

Preset parameters:

H p s D location of numerical part of f.d.a.
N p t F location of exponent of f.d.a.
M p 103 9

J .:1 p 9 set and used by subroutine
L E 56 9

B. Subroutines to carry out arithmetical operations on complex numbers.

B1 Complex Operation No. 1.
Interpretive; 16 storage locations; working positions hD, (h+2)D;
time : 21 msec per order.

This subroutine is entered in the usual manner and executes the orders follow­
ing the entry, operating on long or short complex numbers. Each order oper­
ates on the complex number C(n) + iC(n+2), whtlre n is the address specified

SPECIFICATIONS OF SUBROUTINES 79

in the order. This subroutine enables operations to be carried out on complex
numbers by the following orders: A, S, T, U, L, R. Multiplication by a real
constant (placed in the multiplier register before the subroutine is entered)
can also be used.

Preset parameter: 45 I H I PhD (h even)

Notes: 1. Shifting, up to 6 places must be effected by a series of single or
double shifts (i.e., L D or L 1 F). A shift of 7 places or more may be obtained
by a pair of orders, e.g., L 2n-G F, L(2n-s - 2) F.

2. Y order is meaningless.
3. T D, U D must not be used, since they will destroy the contents

of 20.
4. Exit from the subroutine is made by an E order immediately fol­

lowing a T order. Control is transferred to the address specified in the E
order.

5. Care should be taken that the first time B1 is called in storage
locations hD and (h+2)D are cleared.

B2 Complex Operation No. 2.
Interpretive; even; 54 storage locations; working positions 0 and hD
to (h+10)D; time = approx. 75 msec per order.

Similar to B1 but makes available the following orders: A, S, T, U, V, N, Y,
and right or left shift of one or two places.

Preset parameters: 45 I H I P h D (h even)
46 N is also used by subroutine

Notes: 1. There is no H order. The role of "complex multiplier register"
is undertaken by storage locations hD and (h+2)D, which may be filled by the
order T (or U) hD.

2. See also notes 1, 3, 4, and 5 for subroutine Bl.
3. See Part ill for detailed program.

C. Checking subroutines.

C1 Cycle check, examines one storage location.
Special; even; 44 storage locations; time = about 2.5 sees per
number.

May be applied to a program in order to print C(hD) immediately before obey­
ing the order in n. Numbers are printed in a single column; printing ordered
by the master routine occurs to the right of the previous check number. The
accumulator must be empty before C(n) is obeyed. C(n) must not be altered
by the original program or used in any way other than as an order.

C7 Check function letters, with localized print suppression.
Special; 61 storage locations; time, see Note 5.

Performs a given program order by order, and prints the function letters of
those orders which are drawn from certain specified parts of the store; other
orders are obeyed silently. The store may be divided into four regions, orders
in two of which have their function letters printed.

80 ELECTRONIC DIGITAL COMPUTER

Preset parameters: 45 H p b F

J 46 N P (c-a) F See Note 1
47 M P (c-b) F
48 .1 p () print lowJ or .1 () print high See Note 1.
49 L IP m F start at m

Notes: 1.
as follows:

The regions of the store are specified by the parameters a, b, c

(i) n<a
(ii) ~n<b

(iii) b~n<c
(iv) ~

The subroutine will either "print low," i.e., print function letters of orders
in (i) and (iii), or "print high," i.e. , print function letters of orders in (ii)
and (iv).

2. Print routines in the original program must be arranged to lie in
regions from which the function letters are not printed. Characters printed
by such routines will appear as figures.

3. A new line of printing is begun at each transfer of control; a clear
line is left where orders have been obeyed silently unless such orders them­
selves cause printing to appear on this line.

4. C7 only tests the locations of orders at each transfer of control,
so that if control enters a new region during a consecutive sequence, the mode
of operation does not change immediately.

5. Speed of operation is about 5 orders per second when printing func­
tion letters, 30 orders per second when suppressed.

6. C7 must be placed at the end of the orders on the tape. After being
read it will direct control to itself and commence checking at order m.

7. See Part III for detailed program.

C8 Numerical check, with delayed start and printing from a restricted
region of the store.
Special; *even; 41 + 32 storage locations; time = 200 msec per digit.

May be applied to a program in order to print C(Acc) before obeying T orders
specifying addresses less than a certain number. The main program is obeyed
at full speed until it encounters the order in m when checking commences. The
value of m must be chosen so that C(Acc) = 0 before the order in m is obeyed.
A new line of printing is started at each transfer of control. In general C8
should be used with programs in which all printing is done by a subroutine;
printing is suppressed, using a dummy print routine, and part of C8 is written
over the printing subroutine.

Preset parameters: 45 H PhF location of print subroutine
46 N PnF location of store to hold part of

C8 (n even)
47 M PmF start address
48 .1 PdF number of digits
49 L PsF division of store.

SPECIFICATIONS OF SUBROUTINES 81

Notes: *1. C8 has two parts, one of which, 41 orders long, is written over an
existing print routine. The location of the first order of the other part (32
orders long) must be even.

2. C8 is to be copied onto the tape after the program to be checked.
T 45 K is punched, followed by the parameters and C8, the orders of which
are then placed in the specified positions. The order directing control to the
main program must be placed immediately after C8.

3. C8 prints C(Acc) only if the address specified in the T order is
less than s.

C9 Check function letters with delayed start and suppression of check
during closed subroutines.
Special; 48 storage locations; time =about 1/4 sec per order printed.

Similar to Cll but has a delayed start and will cease checking during each
closed subroutine. Cannot be applied to a program which contains a subroutine
with more than one program parameter.

C10 Numerical check with delayed start and suppression of check during
closed subroutines.
Special; even; 37 + 51 storage locations; time = 1/5 sec per digit
printed.

May be applied to a routine in order to print C(Acc) before obeying T orders.
It has a delayed start and will cease checking during each closed subroutine.
It may be used only on programs containing subroutines with at most one pro­
gram parameter. If the program has the order A n F in S(n) for a purpose
other than entry to a closed subroutine, C10 will fail at that point.

Preset parameters:

:~ I ~ I ~~~
47 M PmF

see Note 1
number of digits to be printed.
address of order at which checking

starts.

Notes: 1. Part of the subroutine, 51 orders long, is placed in locations h to
(h+50) and may be written over a print routine in the master routine in which
case printing from the master routine will be suppressed.

2. A new line of printing is started at each transfer of control.
3. A line feed occurs when a closed subroutine is encountered.
4. The address m of the order at which checking starts must be

chosen as described in Note 2 of C5.
5. The first number printed by C10 is the numerical representation

of the order at which checking starts.
6. C10 must be placed at the end of the tape and followed byE p K P F,

directing control to the master routine.
7. A T order immediately following a closed subroutine with no pro­

gram parameters will not cause C(Acc) to be printed.
8. See Part III for detailed program.

Cll Check function letters.
Special; 32 storage locations; time =about 1/5 sec per order.

Obeys a given program order by order and prints the function letter of each
order. Cannot in general be used on a routine where printing occurs.

82 ELECTRONIC DIGITAL COMPUTER

Notes: 1. A new line of printing is begun at each transfer of control.
2. U used on a print routine employing an F order Cll will behave

as though the F order always reads from the teleprinter the symbol F. If
the original program calls for a figure shift, the following printing will appear
as figures. Otherwise symbols printed by the original program will appear as
letters following the "0" which indicates the print order.

3. Cll should be placed at the end of the orders on the tape, (the final
E m K P F being deleted) and followed byE m F. Cll will then begin to obey
the original program at the order in location m.

C12 Check function letters with dummy print routine and delayed start.
Special; 40 storage locations.

The original program operate_s at full speed until the order h is obeyed for
the nth time. Checking then commences, and function letters are printed.
h must be so chosen that the accumulator is always empty before C(h) is
obeyed and C(h) is not altered by the original program or taken into the arith­
metical unit before checking starts. There is a dummy print routine at the
head of C12 which returns control to the master routine without printing.

Notes: 1. C12 must not be fed into the machine before C(h).
2. Figure shift must not be called for by the original program, ex­

cept in a print routine which is overwritten by C12. Print routines calling for
figure shift during input must not be placed after C12 on the tape.

3. The dummy print routine destroys C(O). When checking, it appears
as ATE

E
*4. If the original print routine had a normal program parameter, in­

sert A 2 F in front of G K T 45 K. The whole routine now occupies 41 positions,
and the dummy print routine appears when checking as A A T E

E
For two or more program parameters, insert A 2 F the corresponding number
of times.

5. The program is started in the usual way byE m K P F.

Preset parameters: 45 J H [P h F position at which checking starts
46 N P n F delay

D. Division subroutines.

D3 Division, small.
Closed; 20 storage locations; time = (22 m + 105) msecs, where
2-m-l~IC(4D)I~2-m .

Forms C(OD)/C(4D) and places the result in OD. Slower than D7 but occupies
less space.

Repetitive process:

a n+l = -anCn + an

Cn+l = -c~
stop when Cn = 0.

a o = dividend

c0 + 1 = divisor

SPECIFICATIONS OF SUBROUTINES 83

D4 Division, small, positive divisor.
Open; 11 storage· locations, working position OD; time = (22m+108)
msecs , where 2-m- l~ lc (Ace): S.2 - m.

Forms C(hD)/C(Acc.) , where 1> C(Acc)> O, and places result in hD. A special
case of D3.

Preset parameter: 45 I H I P h D

Notes : 1. The number of significant figures in the quotient is one less than
the smaller of the numbers of significant figures in C(hD), C(Acc).

2. The left-hand half of the accumulator is clear at the end of the
process, but the right-hand half is not. O<C(Acc)<2 - 34 •

3. See Part III for detailed program.

D6 Division, accurate, fast.
Closed; 36 storage locations; working positions 6D and 8D; time =
(10m+120)ms ec s , where 2 - m- l S.IC(4D) I< 2- rn.

Forms C(OD)/ C(4D) where C(4D) f 0 and f -1, and places result in OD.

Accuracy: maximum error ± K·2- 35 ±:z-34 , where K = quotient.

Note: See Part III for detailed program.

D7 Division, rapid.
Closed; 26 storage locations; time = (12m+105) msecs, where
2 - m- 1S.Ic(4D)I<z-m.

Forms C(OD)/C(4D) and places the result in OD. Uses same repetitive proc­
ess as D3.

Notes: 1. The right-hand side of the accumulator is not cleared at the end
of the operation, i.e., OS.C(Acc)<2-34 •

2. At the end of the process -2-34 LC(4D)> -2-17 •

E. Exponential subroutines.

E2 Exponential, slow.
Closed; 19 storage locations; working positions OD and 6D; time =

930 msecs.

Forms exp [C(4D)] - 1 and places the result in 4D. -1~C(4D)<.693.

Accuracy: probable error = :z-33 •

Note: See Part III for detailed program.

E3 Exponential, large range.
Closed; even; 56 storage locations; working position 4; time =

(244+19p) msecs.

Forms exp (2Py), where y = C(R)S.O and p21. Places result in OD.

Preset parameter: 45 I H I P p F

Accuracy: the greatest error occurs when exp (2Py) is nearly equal to
unity; the error is then less than (2 p- l + 1)·2- 34 • The error diminishes rapid!~
as exp (2Py) decreases. For small values of exp (2Py) the error is less than 3·2" ~

84 ELECTRONIC DIGITAL COMPUTER

E4 Exponential, fast (used with R9) .
Closed; even; 36 storage locations; time = 120 msecs.

Forms exp (x) where x = C(R) and -l~x::;.o. Places result in OD. R9 must be
in the store while E4 is being read.

7
Accuracy: maximum error is 2-34 + 2-35 L I xi r.

r =O
Note: See Part III for detailed program.

F. General routines relating to functions.

F1 Interpolation in a table of long numbers.
Closed; even; (68 + 2b) storage locations; working positions OD, 10D,
12D, . . . , (8 + 2b)D; time = (60+24b2) msecs.

Given in consecutive long storage loca tions, a table of a function at unit inter­
vals of the argument, with the entry corresponding to zero argument specified
by a program parameter, the subroutine calculates the value of the function
for argument 2 C(4D) and places it in 10D. The number of entries over which
the interpolation is made and their positioning with respect to the argument
may be specified.

Preset parameters: 45 H p 2b ~] see Note 1. 46 N p a
47 M p 2n-2 F
48 .6 J 49 L are also used by the subroutine
50 X

p I A p F J Orders calling in F1
P+1 G sF

Program parameter . • . P+2 A mD where f(O) = C(mD)

Accuracy: Maximum error is ±2-36b(b+1) with probability 2 - b (b+l)/2.

R.M.S. value of error is 2-35b.

Notes: 1. The interpolation uses b values of the function of which there are
a with arguments less than the integral part of the argument. b~ll.

a = 0, b = 2, corresponds to linear interpolation.
2. See Part III for detailed program.

F2 Solution of f(x) = 0, or inverse interpolation (second order process).
Closed; 58 storage locations; working positions 4D, (h+4)D, (h+6)D,
(h+8)D.

Places a solution of f(x) = 0 in hD. f(x) must be defined by an auxiliary subrou­
tine. Two trial values, x 1 and x2 , must be placed in hD and (h+2)D before F2
is called in. They must be such that f(xl) and f(xz) have opposite signs. The
solution will lie between x 1 and x2 •

Preset parameters: 45 1 46
47

HIp hD
N P n F
M is also used by the subroutine.

SPECIFICATIONS OF SUBROUTINES 85

Notes: 1. The auxiliary subroutine must be of the normal closed type com­
mencing at n. It should place f [C(hD)) in OD, leaving C(hD) unaltered.

2. If f(x 1) and f(x2) have the same sign, F2 will place x 2 in hD and
the accumulator will contain 2-35 •

3. 4D may be used by the auxiliary subroutine, but not (h+2)D to
(h+8)D.

4. For inverse interpolation F1 can be used by the auxiliary.
5. If x is not required to an accuracy better than t2m- 33 , where m.$.10,

order 52 of F2 may be replaced by R 2n' F. This will save time, but the R.H.
half of the accumulator may not be empty on exit.

6. See Part III for detailed program.

F3 Differencing and checking subroutine No. 1.
Closed; 26 storage locations + 12 for numbers; working position 4D;
time = 36 msecs.

This subroutine calculates the first, second, third, and fourth differences of
successive values of a function and checks that the magnitude' of the fourth
difference does not exceed a specified quantity. The current values of the
function and the first 4 backward differences are held in mD, (m+2)D, (m+4)D,
(m+6)D; each time the subroutine is called in C(OD) is taken as the new cur­
rent value of the function and the differences are all advanced one step. If the
fourth differences exceed C(m+10)D in magnitude a"?" is printed.

Preset parameter: 45 I H I P m D
or P m F

Notes: 1. The subroutine may be used to handle short numbers by punching
P m F instead of P m D for the preset parameter. Differences of successive
values of the function, the current value of which is placed in OD, will then be
computed and placed in (m+2), (m+4), etc.; a"?" will be printed if the fourth
differences exceed C(m+10) in magnitude.

2. See Part III for detailed program.

F4 Differencing and checking subroutine No. 2.
Closed; 32 storage locations + 16 for numbers; working position 4D;
time 42 units.

Similar to F3 but calculates the first, second, third, fourth, fifth, and sixth
differences of successive values of a function and checks that the magnitude
of the sixth difference does not exceed a specified qua ntity.

Preset parameter: 45 I H I P m D address of current value of function.

F5 The minimization of a positive function of n variables using a digital
process.
Closed; 44 storage locations; working space, OD , OM, 2M; time =

approx. 500n+50n· t msecs, where t = time for auxiliary subroutine.

Given a set of n va riables in storage locations aD, (a+2)D , (a+4)D, ... , (a+2n-2)D
the subroutine will continually adjust these variables, by the method described
below, to seek a minimum of a positive function f of these variables. At each
stage f is calculated and placed in OD by an auxiliary closed subroutine whose
first order is in OL1.

86 ELECTRONIC DIGITAL COMPUTER

Method: 1. The first variable is successively decreased by an amount h until
the calculated values off begin to increase.

2. The smallest value off is chosen and the process 1 repeated for
each of the other variables in turn.

3. The processes 1 and 2 are repeated, using -h instead of h.
4. The processes 1, 2, and 3 are repeated, using -(-h)/ 8 as deere-

ment.
5. When the decrement h/sm becomes less than 2-34 , the process

terminates.

Accuracy: depends on the function and the starting value. For "well­
conditioned'' functions the subroutine will find a value such that if any one of
the variables is adjusted by 2-34 the value off will not decrease.

Note: 1. For maximum accuracy, h should be chosen so that the final decre­
ment is -2-34 , that is, h should be of the form 2- 1- 3P • The library tape uses
h = 2-4 , specified by -h = V F, as the last order of the subroutine. If an ap­
proximate solution is known and used as starting values, h should preferably
be of the order of the initial errors.

Preset parameters: 45 H p a+2n-2 D last variable
46 N p 2n F number of variables
47 M p s D working space
48 L1 p t F location of first order of

auxiliary subroutine

G. Subroutines for integration of ordinary differential equations

Gl Simultaneous first-order differential equations by modified Runge­
Kutta process; single step, long numbers
Closed; even; 66 storage locations; working positions OD, 40, and
6D; time 0.21n seconds per step + time of auxiliary.

Each time this subroutine is called in it will advance the values of the variables
by one step. It requires an auxiliary closed subroutine to calculate the first
derivatives y' of all the variables from given values of the variables y. For
detailed description of the process, see Part I, Sections 4-71, 4-72, and 4-73.

Preset parameters: 45
46
47

48

49
50

HIP a D
N P 2n F
M P b-a F (if a<b)

olr V(2048 - a+b)F (if a>b)
L1 P c-b F (if b<c)

olr V(2048 - b+c)F (if b>c)
L P 2m- 2 F
X P d F

Accuracy: the truncation error in one step is of the order h5 • For a
small set of well-behaved equations its magnitude is roughly 10-2 h5; for large
sets or difficult equations it may be greater. Rounding-off errors accumulate
at a rate corresponding to the keeping of (34+m) binary digits.

SPECIFICATIONS OF SUBROUTINES 87

Notes: 1. The variables yare stored inn consecutive long storage locations,
the last of which is aD.

2. The auxiliary subroutine is of the normal closed type and com­
mences at d; it should place the quantities 2mhy ' in n consecutive long storage
locations, the last of which is bO.

3. A further n long storage locations, the last of which is cO , are
required by Gl to hold the quantities 2mq. At the beginning of a range these
must be cleared.

4. If the independent variable is required it may be obtained by in­
cluding an extra variable with the corresponding value of 2mhy' = 2mh. The
latter quantity may be set once and for all at the beginning of the range; it
will not be disturbed.

5. m should be chosen so that the largest 2mhy' is just within the
capacity of the accumulator.

6. Gl uses OD, 40, and 60, but these may also be used by the auxil.:..
iary subroutine.

7. See Part III for detailed program.

G2 Simultaneous first-order differential equations by Runge-Kutta
process; single step, short numbers
Closed; even; 68 storage locations; working positions 0, 1, 4; time =

0-21n seconds per step+ time of auxilia ry.

Similar to Gl, but works with short numbers.

Preset parameters: 45
46
47

48

~ I ~ ~ ~ J note difference from Gl

M P b-a F

o[r V 2048-a+b F
Ll P c-b F

olr V 2048-b+c F
49 L P 2m-Z F
50 X P d F

Accuracy: The truncation error in one step is of the order h 5• For a
small set of well-behaved equations its magnitude is roughly 10-2 h5 ; for large
sets or difficult equations it may be greater. Rounding-off errors accumulate
at a rate corresponding to the keeping of (16+m) binary digits.

G3 Integration of y" = f(x,y) by fifth-order process.
Closed; 45 storage locations; working positions 00, 40, 100.

Each time this subroutine is called in it advances the integration by one step.
A separate subroutine is needed to calculate f(x,y).

Preset parameters: 45 / H j P n 0 (n must be even)
46 N P m F

A . (I V I V) 4/ O ccuracy: truncation error = Yo - Yn h 24 ove r range Yo to Yn-

Notes: 1. Apart from this subroutine, 11 long storage locations must be pro­
vided, beginning with nD.

88 ELECTRONIC DIGITAL COMPUTER

2. An ordinary closed subroutine, starting in m must calculate
f[C(n t-10)D, C(n+18)D] and place it in (n+20)D.

3. The initial values must be placed in the following long storage
locations at the beginning of the integration:

H Yl 2H 4H
11

Yl 6H

10H Xl 12H h(integration step) 14H

16H 1/12 = 0.083.

4. After using the subroutine, corresponding values of x andy will
be found in (n+10)D and (n+18)D respectively (i.e. , in lOH and 18H).

5. Storap- e locations OD, 4D, 10D are used. The auxiliary subroutine
can use OD and 4D but not 1 OD.

6. The time taken depends on the number of iterations necessary.
It equals p(52 + auxiliary time)+ 15 msecs , where p is the number of itera­
tions, usually about 3.

7. See Part III for detailed program.

G4 Integration of y 11 = F'(x,y) by sixth-order process
Closed; 47 storage locations.

Similar to G3 but uses a sixth-order process.
II 2 n 2

Y2 = Yl + dM+ (y2 + 6 yd12)h

Tl 2 n
Y2 = f(x 2,y2 - h 62 Yl/240)

J. Subroutines for calculating special functions

J1 Calculation of Legendre polynomials
Closed; even; 36+2q storage locations; working positions OD,
(4+2q)D, (6+2q)D; time = 52(q-1) msecs.

Calculates ~P0 (2x), ~P1 (2x), ~Pq (2x), where x = C(6D) and places them in
4D, 6D (4+2q)D respectively each time the subroutine is called in.
-t~x.SJ, q~lO.

Preset parameters: 45 1 H I P 2q D I the subroutine calculates Po ,
46 N . P 2q 9 P1, .. . P q.
47 M is also used by the subroutine.

Accuracy: maximum error 2-34 [r + ~4x)~'- 2] approx.
rms value of error is 2r-v5(2xt- 2 approx.

Note : See Part III for detailed program.

K. Subroutines for the summation of power series

K1 Summation of a power series
Closed; 17 storage locations; time = (27+18n) msecs.

Calculates F n(x) = aoxn + alxn-l + +an where xis C(R) and ar =
C(m+2r)D and places F n(x) in OD.

Preset parameters :

SPECIFICATIONS OF SUBROUTINES

45 I H I P 2n F
46 N A m+2n D (m must be even)

Accuracy: round-off error'~2- 3 5 [(1 - Jx nJ)/ (1- Jx J)]

Note: See Part III for detailed progra m.

K2 Summation of a complex power series.
Closed; 30 storage locations; time = (57+48n) msecs .

n
Calculates F n(z) = r~ Ar zn-r = X + iY where z = C(SD) + iC(10D) and

89

Ar = C(m+4r)D + iC(m+4r+2)D, r = 0, 1, 2, .. . , n. Places X in 40 andY in 60.

Preset parameter s : 45 I H I P 4n F
46 N P m H (m must be even) .

K3 Summation of a power series of even terms.
Closed; 27 storage locations; working position 6; time = (27+20r)
msecs.

Calculates F(x) = C(nD) + C [(n-2)D] .. x2 + C[(n-2r+2)D]·x 2 (r-l) where
x = C(4D), and places F(x) in 00.

Program parameters : J
Accuracy : See K4.
Notes:

K4 Summation of a power series.
Closed; 22 storage locations; working position 6; time = (15+20r)
msecs .

Calculates F(x) = C(nD) + C [(n-2)D]·x + .. . C[(n-2r+2)D]·xr-l where x = C(4D),
and places F(x) in OD .

Program parameters:

p
P+1
P+2
P+3

A p
G s
A n
P 2r

~] Orders ca lling in K4

D
F

Accuracy : maximum error is ±2- 3 5 0- \xn/ (1 -lx l)

Notes : 1. C(4D) remains unchanged.
2. Since C(R) = C(4D) at the end of the subroutine X·F(x) may be

formed in the accumulator by using the order V D in the master routine after
the subroutine.

3. See Part III for detailed program.

K5 Division of a polynomial by a linear factor giving the quotient poly­
nomiai and the remainder (complex numbers).
Closed; 37 storage locations; working positions 40 , 60; time =
65+57n msecs.

n P(z) r' - l 1 Z
Let P(w) = L. Ar~-r and-- = ·L. Z r zn- - r + _ n_ . Given A0 ... An this

r=O z-w r=o z-w
subroutine calculates Z o ... Zn by means of the recur rence relation Z r+l=
Zrw + A r+l • where z0 = Ao . Tl•e r eal and imaginary parts of ware stored

90 ELECTRONIC DIGITAL COMPUTER

in 8D and lOD respectively and the real and imaginary parts of Ar are stored
in (4r+m)D and (4r+m+2)D respectively. The real and imaginary parts of Zr
are stored in (q+4r)D and (q+4r+2)D. In addition, the real and imaginary parts
of Zn are stored in 4D and 6D respectively.

Note: If desired the coefficients Zr may be written over the coefficients Ar;
that is, q may equal m.

Preset parameters:

HI El
P 4n F
P m H
P q-m F

K7 Shift of origin of a polynomial (real numbers).
Closed; 29 storage locations; working positions OD, 4D; time =
ll(n+1) 2 msecs.

n
Given the coefficients of the polynomial r~l arx n-r, the subroutine replaces
these by the coefficients of the polynomial

n n-r - n]n-r
r~ brX = r~ar[X+C(R) ,

using Horner's method. ar is stored in (h+2r)D.

Note: The contents of the register are unaffected by the operation of the
subroutine.

Parameters: ~ 2~ ~] punched at the end of the subroutine by the user.

K8 Shift of origin of a polynomial (numbers expressed in floating deci­
mal form).
Closed; 34 storage locations; working positions 4D, OD*, OH*, ON*;
time= n 2/8 sees.

11

Given the coefficients of the polynomial r~arx n-r, the subroutine replaces
these by the coefficients of the polynomial

n n
..- b n-r ..- ()n-r
r~ rX = r~ar X+a ,

using Horner's method. All numbers are expressed in floating decimal form
as used in All. ar is stored in location (h+2r)D and a is stored in location 6D.

Notes: 1. All is used as an auxiliary subroutine.
--- *2. Working positions OD, OH, and ON are those used by All.

3. The floating decimal accumulator must be cleared before using
K8 - it will be left clear.

4. Since K8 uses the same M and .1 parameters as All, it may follow
All on the input tape without these parameters being replaced.

Parameters:
A h DFJ punched at the end of the subroutine by the user.
P 2n

Preset parameters: M and .1 parameters as for All

SPECIFICATIONS OF SUBROUTINES

L. Subroutines for evaluating logarithms.

L1 Logarithm to base 2. Large range.
Closed; 38 storage locations; working positions 4D and 8; time =
(13m+776) msecs where m =integral part of logarithm.

Calculates (1/32)log2 [C(6D)] and places result in OD.

Accuracy: 34 binary places, but not rounded off.

Notes: 1. If C(6D)<2-32 , accumulator capacity is exceeded.
2. -:r34 is left in 4D.
3. See Part ill for detailed program.

L2 Logarithm to base 2, small range.

91

Closed; 31 storage locations; working position 4D; time = 950 msecs.

Calculates logz [2·C(6D)), where 1/4 .$.C(6D)<1, and places result in OD.

Accuracy: maximum error = ±2 - 34

M. Miscellaneous subroutines.

M1 Assembly subroutine No. 1.
Special; 16 storage locations.

Facilitates the assembly of a master routine, number sequences, and closed
subroutines to form a complete program. See Part I, Sections 4-61 and 4-62.

Note: See Part ill for detailed program.

M2 Assembly subroutine No. 2.
Special; 16 storage locations.

Facilitates the assembly of a master routine and closed subroutines to form
a complete program. Does not apply to number sequences. See Part I, Sec­
tions 4-63 and 4-64.

Note: See Part III for detailed program.

M3 Print heading.
Closed; 10 storage locations (temporarily); working position 0.

Copies information directly from the tape to tne teleprinter and may thus be
used to print a heading at the top of a sheet.

Notes: 1. M3 is placed at the front of the program tape unless R9 is used,
in which case M3 follows R9. No control combinations need precede M3.

2. M3 is immediately followed by the heading, which may include
line feed, carriage return, etc., according to the teleprinter code.

3. The heading is followed by blank tape, and the succeeding orders
should be prefaced by a control combination of the form P K T n K.

92 ELECTRONIC DIGITAL COMPUTER.

P. Print subroutines.

P1 Print a single positive number (without layout or round-off).
Closed; 21 storage locations; time = (17ln+10) msecs.

Prints the positive number in OD ton places of decimals, leaving R·10 n in OD,
where R is the remainder.

PP+1 I AG ps FFJ orders calling in P1 Program parameter:
p-+2 P n F

Notes: 1. Teleprinter must be on figure shift.
2. Layout must be separately controlled.
3. Round-off is not included.

P6 Print short positive integer.
Closed; 32 storage locations; working positions 1, 4, and 5; time=
about 900 msecs.

Prints 2 16·C(O) with suppression of nonsignificant zeros but without layout.

P7 Print positive integer up to 10 digits .
Closed; even; 35 storage locations; working position 40; time =

approx. 1.8 sec.

Prints 234 ·C (OD) with zero suppression but without layout.

Notes: 1. Teleprinter must be on figure shift.
2. Layout must be separately controlled.
3. C(OD) must be positive and less than 1010 ·2-34 •

4. U the number to be printed is less than 10 9, the left-hand zeros
are replaced by spaces. In any case, 10 positions on the paper are used.

5. See Part Ill for detailed program.

P8 Print table of positive integers in a special layout.
Closed; even; 62 storage locations; working position 4.

Prints n = 234 .C(OD) in a special layout. 0~<10 10 • Layout: first number in
each row printed to full 10 decimal digits; of the remaining numbers, only the
least significant d decimal digits are printed. c numbers in each row, one
space between columns. 5 lines in each block.

P10 Print a short positive integer, with conversion check, error indi­
cation, and optional suppression of nonsignificant zeros.
Closed; 70 storage locations; working positions 0, 1, 4, 5, and 6;
time = approx. 1.8 sec.

Prints C(4) as a short integer. Failure ofF-check is indicated by"?" after
incorrect digit. Failure of binary-decimal conversion check is indicated by
''?? '' after incorrect number.

Program parameter: P F
or I F

for no zero suppression
for zero suppression

SPECIFICATIONS OF SUBROUTINES 93

P11 Print signed decimals in a preset layout (with digit check).
Closed; 52-ts* storage locations; working position 4; time = about
180 mse~s per symbol.

Prints C(OD) rounded-off, preceded by negative sign if negative. Layout:
n columns with s spaces between columns; preset digit layout (see note 8);
blocks of 5 lines with one space between blocks.

Preset parameters: 45
46
47
48

H round-off order
N P 5n F
M P (44+S) (}
.1 p X F

Notes: 1. Figure shift takes place during input of orders.
2. Negative numbers are preceded by -, positive numbers by a space.
3. Maximum width of layout = 70 symbols.
4. If the F order shows an error, a line feed occurs and the next

digit printed may be in error.
*5 . s can be 1, 2, 3, or 4.

6. Last order on library tape is P 5 F, giving number of lines in
block. This may be altered if required, but the second preset parameter will
then be n (block length) .

7. If the subroutine starts in q, a new block will be started if (q+20)
is cleared before the next number is printed.

8. The digit layout is determined by the fourth preset parameter
P x F, where x may be obtained as follows. Imagine the printed characters,
including digits and spaces (only single spaces are permissible) laid out in
the form below, starting with the most significant digit at the left-hand end.
Then add together the numbers below the spaces, and the number above the
last digit; the sum is x.

I I I I I I I I I I I I I I I I

For example: (i) to print 10 digit numbers with spaces after the 3rd, 6th,
and 9th digits, x = 6144 + 384 + 24 + 4 = 6556; (ii) to print 8 digit numbers
with spaces after the 4th and 5th digits, x = 3072 + 768 L 32 = 3872.

9. See Part III for detailed program.

P12 Print signed integers in a standard layout (with digit check).
Closed; 57 storage locations; working position 4; time = about
300 msecs per symbol.

Prints 234 ·C(OD) preceded by negative sign if negative. Layout: 5 columns,
5 lines per block; numbers in subcolumns of 4, 3 and 3 digits with one space
between numbers.

94 ELECTRONIC DIGITAL COMPUTER

P13 Print single decimal (without layout or round-off) with digit check
and variable digit layout.
Closed; 30 storage locations; time = (9+30n) msecs.

Prints the positive number in OD ton places of decimals, leaving R·10 in OD,
where R is the remainder. The digit spacing and n are determined by a pro­
gram parameter P x F, where x is calculated as in Pll.

P t p 1 I GA p FFJ orders calling in P13 rogram parame er: P+ s
P+2 p X F

Notes: 1. Teleprinter must be on figure shift.
2. Round-off is not included.
3. Failure of F check causes # to be printed.

P14 Print signed decimal with round-off and digit check. Layout con­
trolled by program.
Closed; 46 storage locations.

Prints the decimal number in C(OD), rounded-off. Digit spacing, number of
digits printed and layout are determined by a program parameter.

Preset parameter: 45 I Hi A mD round-off order

p A p F J orders calling in P13
P+1 G s F

Program parameter: P+2 p X F
or K 4096+X F Layout constant: see note 2.

Notes: 1. Figure shift is called during the input of orders.
2. The number of digits and their spacing is determined by the pro­

gram parameter, which is calculated as in subroutine Pll. Carriage return
and line feed will occur before the number is printed if K 4096 F is added to
this layout constant. Each number is followed by a space.

3. If the F order shows an error a line feed will occur and the next
digit printed may be in error.

4. Negative numbers are preceded by a negative sign, positive num­
bers by a space.

5. See Part III for detailed program.

P15 Print positive number held in register (without digit check or
layout).
Closed; 24 storage locations; working positions OD, 4.

This subroutine will print the number held in the register to n decimals. Nega­
tive numbers are printed as complements. If P15 is entered at the first order
a new line of printing is commenced. If it is entered at the third order the
number is printed on the same line.

Accuracy: no round-off is incorporated.

Notes: 1. The F-check is not used.
2. Each number is followed by one space.

Parameters: P n F is punched at the end of the subroutine.

SPECIFICATIONS OF' SUBROUTINES

Q. Quadrature subroutines.

Ql Evaluation of definite integral, using Simpson's rule.
Closed; 46 storage locations; working positions OD and 4; time =
36+n(36+ T) msecs, where n = (b-a+h)/h = number of ordinates,
T = time for auxiliary subroutine.

95

Places 3}J(x)dx in pD, where pD is specified by a preset parameter and a, b,
and h (the interval of integration) are given by program parameters. f(x) is
computed by an auxiliary closed subroutine placed with its first order in q
and designed to put f(x) in OD where x = C(OD).

Preset parameters: 45 I H I ~
p D

46 N q F

p A p : J orders calling in Ql
P+l G s

Program parameters: P+2 p zl5a F
P+3 p zlEh F
P+4 p zl5b F

Accuracy: rounding-off error is n-2-35 in the worst case.

Notes: 1. -l~a<b<l. h must be positive and such that (b-a)/h is an even
integer.

2. The program parameters are shown above a3 pseudo-orders.
They are really the values of a, b, and h expressed as short numbers.

3. Ql uses OD and 4 but these positions may also be used by the
auxiliary subroutine.

4. If desired, the integration may be made to terminate when f(x)
becomes less than a specified quantity by including a suitable test and con­
ditional order in the auxiliary subroutine.

5. See Part III for detailed program.

Q2 Evaluation of a definite integral, using Gauss' 5-point formula.
Closed; even; 52 storage locations; working position (P+4)D;
time = 206 msecs + 5(auxiliary time).

Places l~(x)dx in OD where a = C(pD) and (b-a) = C [(P+2)D] and f(x) is com­
puted by an auxiliary closed subroutine placed with its first order inn and
designed to put f(x) in OD where x = C(OD).

Preset parameters: 45 I H I P p D
46 N G n F

Accuracy: rounding-off error is z- 35 [1+5(b-a)] in the worst case.

Notes: 1. Remainder term of the formula used is 4.10- l3 ·(b-a)11 f (lo) (x')
where a<x '<b. , (b

2. At the end of the process [1/(b-a)-lfa f(x)dx is left in (P+4)D.
3. R9 must be in the store when Q2 is read.

96 ELECTRONIC DIGITAL COMPUTER

Q3 Quadrature, using Gauss' 6-point formula.
Closed; even; 48 storage locations; working position (m+4)D;
time = 240 msecs + 6 times the time of the auxiliary subroutine.
ra+h

Places I= Ja-h f(x)dx in OD, where a= C(mD) and h = C[(m+2)D]/ and f(x) is
computed by an auxiliary closed subroutine whose first order is in n and
which places f[C(OD)] in OD.

Accuracy: truncation error of the formula used is

1o-15 x f 12 un . (2h)13 = o. 7 x 10-7 f;1
2g/ (2h) 13 •

Rounding-off error in worst case is 2-35 [1 + 10h + 10h (max f'(x))].
(a+h) 2.9 2.(a-h)

Notes: 1. R9 must be in the store when Q3 is read.
2. I/2h, that is the mean value, is placed in (m+4)D.
3. See Part III for detailed program.

Preset parameters: 45 H I P m D ! location of parameters and working
space

46 N P n F location of auxiliary subroutine

R. Input subroutines.

R1 Input of a sequence of signed long decimal fractions.
Closed; 55 storage locations; working positions 0, 1, 4, 5, and 6.

Given a sequence of numbers punched as decimals followed by sign, this sub­
routine places these numbers in pD, (P+2)D, (P+4)D and returns control
to the master routine when F appears on tape.

Preset parameters: !~ I :J positions are used by subroutine

mm+l I AG ms FF]orders calling in Rl. Program parameter:
m+2 T p D

Notes: 1. Decimal point is immediately before first digit punched.
--- 2. Any number of di.gits up to 10 may be punched; more will exceed
the capacity of the accumulator.

3. Blank or erased tape is treated as F.
4. See Part III for detailed program.

R2 Input of positive integer during input of orders
Special; 15 storage locations (temporarily);

Reads the input tape and converts the decimal integers thereon to binary form
multiplied by 2-34 and places these in sequence in storage locations mD,
(m+2)D, (m+4)D, etc.

Parameter: T m D must follow the subroutine.

SPECIFICATIONS OF SUBROUTINES

Notes: 1. After the subroutine T m D is punched, followed by the integers,
each terminated by F with the exception of the last one which is terminated
by 1rT Z.

97

2. After the integers have been read, 1T T Z returns control to the
initial orders and subsequent orders read from the tape will be written over
R2.

3. See Part ill for detailed program.

R3 Input of one signed long decimal fraction.
Closed; even; 41 storage locations; working positions 4D and 6D.

Reads one fraction punched in decimal form followed by sign, and places it
in OD .

R4 Input of one signed integer.
Closed; 22 storage locations; working positions 4, 5, and 6.

Reads one integer y punched in decimal form followed by sign, and places
y.2-34 in OD.

Notes: 1. 1 y [<2-34
2. R4 is applicable to either long or short numbers; in the latter

case y·2- 16 will be left in 0 provided that -216s;.y<2 16 •

R5 Input of a sequence of signed long decimal fractions during input
of orders.
Special; even; 32 storage locations (temporarily); working position OD.

The numbers are punched on a separate tape as sign followed by decimals, the
first number being preceded by Z T X. After the subroutine, T m D is punched,
followed by the sequence of numbers, which is copied in the reverse direction.
The numbers are then placed in mD, (m-2)D, etc., so that mD is the location
of the number originally punched last.

Parameter: T m D must follow the subroctine.

Notes: 1. Any number of digits may be punched.
--- 2. After the decimals have been read control is returned to the initial
orders and subsequent orders read from the tape will be written over R5.

R7 Input of a sequence of signed long decimal fractions during program.
Closed; even; 37 storage locations; working position OD.

The numbers are punched on a separate tape as sign followed by decimals,
each group being preceded by X. This tape is then copied on the main tape
in the reverse direction. Each time the subroutine is used, it will read the
numbers from the tape until X is reached. Control is then referred back to
the main program, the numbers on the tape having been placed in storage lo­
cations mD, (m-2)D, etc., where mD is the storage location of the number
originally punched last in that group.

PP+l I AG ps FFJ orders calling in Rl Program parameter:
P+2 T m D

98 ELECTRONIC DIGITAL COMPUTER

Notes: 1. Any number of digits may be punched.
--- 2. In a decimal fraction the last significant digits of which are zero,
these zeros may be omitted.

3. See Part III for detailed program.

R9 Input of positive integers during input of orders. Standard form
for regular use.
Special: 15 storage locations.

The actual orders of this subroutine are identical with those of R2 , but R9 is
intended always to be placed in locations 56 to 70 inclusive, and to remain
there throughout the input of a whole program, being used any number of
times. Each time it is used it will read a sequence of positive decimal in­
tegers and place them in consecutive long storage locations.

Notes: 1. The subroutine tape commences with P K T 56 K, so that it may
be copied immediately at the head of a tape. It does not have E 13 Z at the
end, so that it is not automatically obeyed after being read.

2. R9 is called in by the control combination E 69 K T m D. This is
followed by the integers each terminated by F except the last, which is termi­
nated by rr to return control to the initial orders. After this must be punched
a control combination to restore the transfer order, e.g., T Z. The integers
will be placed in mD, (m+2)D, (m+4)D, etc.

3. Negative integers may be read if 23 5 is added to each before punch-
ing.

S. Subroutines for evaluation of fractional powers.

S1 Square root, slow.
Closed; 22 s torage locations; working pos itions 4, 5, and 8; time =

825 msecs.

Forms YC(6D) and places result in OD.

Accuracy: 2-34 • Last digit is always 1.

Notes: 1. If C(6D).:::;.-2-3 2 , accumulator capacity is exceeded. If -2 - 32<C(6D)
<O final C(OD) = -(1-2 - 3'1.

2. C(6D) is left unchanged. C(4D) becomes -2-34 •

S2 Square root, fast.
Closed; 22 storage locations; working position OD; time = approx.
(36n+180) msecs, where (2 1/ 4fn- l .:::;_c(4D)<(2 1/ 4rn .

Forms YC(4D) where C(4D)>O and places res ult in 4D.

Accuracy: Number of significant figures in result is two less than num­
ber 0f s ignificant figures in a r gument.

Notes : 1. If C(4D) = 0, subroutine continues to cycle indefinitely.
2. See Part III for detailed program.

SPECIFICATIONS OF SUBROUTINES 99

S3 Cube root.
Closed; 25 storage locations; working positions 4, 5, 8, and 9; time =
approx. 1 sec.

Forms cube root of C(6D) and places result in OD. C(6D) may be positive or
negative and is left unchanged at the end.

Note: See Part Ill for detailed program.

S4 Reciprocal square root.
Closed; 22 storage locations; time = approx. (36n+180) msecs,
where (2.25fn-l.s;_C(4D}<(2.25rn.

Forms C(OD)/JIC(4D) and places the result in OD. C(4D) must be >O.

Accuracy J See S2
Notes

T. Subroutines for calculating trigonometrical functions .

T1 Cosine, rapid.
Closed; even; 44 storage locations; working position OD; time =
.82 msecs.

Forms 0.5 cos[2·C(4D)] where I2·C(4D)j$.7T/2, and places result in 4D.

Accuracy: maximum error = 2-33 .

T3 General cosine (used with R9).
Closed; even; 59 storage locations; working position OD; time =
105 msecs.

Forms 0.5 cos(2m·C(4D)] and places result in 4D. R9 must be placed in the
store before T3 is read.

Preset parameter: 45 I H I P 2m-:3 F (or P D for m = 2)

Accuracy: maximum error has modulus <2"'35-tm.

Notes: 1. Applies to angles of any magnitude.
-- 2. See Part ill for detailed program.

T4 Inverse cosine.
Closed; even; 33 storage locations; working positions OD and 6D;
time= approx. 900 msecs.

Forms 0.5 arc cos [2 · C(4D)] if 0$.C(4D)$.0.5, or 0.5 arc cos [2!C(4D)IJ
if -0.5$.C(4D)$.0, and places result in OD. OSarc cos [2 · C(4D)]$. 1T/2.

Accuracy: maximum error has modulus less than 2- 18 •

Note: See Part ill for detailed program.

T5 0.5 cos x and 0.5 sin x at equal intervals of x. Version 1.
Open; even; 20 storage locations; time = 36 msecs.

100 ELECTRONIC DIGITAL COMPUTER

Calculates 0,5 cos x and 0.5 sin x at equal intervals dx of x by use of the re­
currence relation.

0.5 cos (x + 4x) = (0.5 cos x)cos dx - (0.5 sin x)sin dx,
0.5 sin (x + b) = (0.5 sin x)cos 6x + (0.5 cos x)sin h,

using long numbers.

Current value of 0,5 cos x in location 2D of subroutine. Current value of
0.5 sin x in location 4D of subroutine.

Cos dx and sin 6x must be provided in mD, (m+2)D, respectively. T5 is fed
into machine with 0.5 cos x = 1/2, 0,5 sin x = 0, Each entry advances x by dx.

Preset parameter: 45 I H I P m D

Notes: 1. Initial values may be reset by entering at order 6.
--- 2. Other starting values may be set by direct planting. It is possible
to change the scale factor by planting a cos x, a sin x.

3. See Part III for detailed program.

T6 0,5 cos x and 0,5 sin x at equal intervals of x. Version 2.
Open; even; 24 storage locations; time = 36 msecs.

Similar to T5, but with different starting condition: the first entry sets
0.5 cos x = 1/2, 0.5 sin x = 0, and each subsequent entry advances the value
of x by dx.

Preset parameter: 45 I H I P m D

T7 Sine, rapid (used with R9).
Closed; even; 36 storage locations; working position OD; time =
81 msecs.

Forms 0.5 sin [2·C(4D)] where I2·C(4D)I~7T/2 and places result in 4D. R9
must be in the store when T7 is read.

Accuracy: maximum error is ~2 - 3 3 •

Note: See Part Ill for detailed program.

T8 Inverse sine.
Closed; even; 37 storage locations; working positions 6D and 8D;
time = approx. 1 sec.

Forms 0,5 sin- 1 [2·C(4D] where - 1/2~C(4D)~1/2 and places result in OD.

Accuracy: probable error is 2- 19 for the range -15/32~C(4D)~15/32.

T9 Tangent, rapid (used with R9).
Closed; even; 46 storage locations; working position OD; time =
155 msecs.

Forms tan C(4D) where -7T/4<C(4D)<7T/4 and places result in 40. R9 must
be in the s tore while T9 is being read.

Accuracy: maximum error is 2-33

SPECIFICATIONS OF SUBROUTINES 101

U. Subroutines for counting operations.

U1 Counting subroutine No. 1.
Closed; 33 storage locations; working position 4; time = 45 msecs
per cycle + time for secondary subroutine.

Controls a secondary subroutine called in by a group of orders of the follow­
ing form

p I A p F
P+1 G m F
P+2 A q F

The secondary subroutine is executed (t-s+r)/r times with q = s, S+r, S+2r,
... , t before control is returned to the master routine. (t-s+r)/ r should be an
integer. r, s, t, and m are specified by program parameters.

U2 Counting subroutine No. 2.
Open; 17 storage locations + 2 for each pair of parameters; time =

30 msecs (average).

This subroutine is incorporated in a program followed by pairs of parameters
as follows: E a1 F, P Q l F ; E a 2 F, P q2 F, etc., (any number of pairs). Con­
trol is transferred at the end of the subroutine to a1 if q.:s;.ql and to a2 if q 1 <
q.:s;_qz, etc., where it is supposed that the subroutine has just been operated
for the qth time.

U3 Counting subroutine No. 3.
Open; 17 storage locations + 2 for each pair of parameters; time =

30 msecs (average).

This subroutine is incorporated in a program followed by pairs of parameters
as follows: E a1 F , P Ql F; E az F, pq2 F, etc., (any number of pairs). The
first q1 times the subroutine is opera ted, control is transferred to a 1 , the
next q2 times to a 2 , etc .

Program parameters: E a1 F~

~ ~~ ~ punched after the subroutine

P q2 F etc.

Notes: 1. A pa ir of parameters Z F, P 1 F will cause the machine to stop.
2. See Par t III for detailed program.

U4 Counting subroutine No. 4.
Closed; 28 storage locations; time = 45 msecs per cycle + time for
secondary subroutine.

Controls a secondary subroutine called in by a group of orders of the follow­
ing form:

p I A p F
P+1 G c F
P+2 *A q F

102 ELECTRONIC DIGITAL COMPUTER

The secondary subroutine is executed n times with q = s, S+r, S+2r ,
S+(n-1)r before control is returned to the master routine.

m A m F
m+l G e F *A may be replaced by any other
m+2 p r F function letter according to the
m+3 *A s F requirements of the secondary
m+4 A n F subroutine.
m+5 G c F

Note: See Part III for detailed program.

U5 Counting subroutine No. 5.
Open; 21 storage locations + parameters; time = 33 msecs (average).

Similar to U3 but when control has been transferred qr times to a r , the sub­
routine is automatically rest!t and control is then transferred q 1 times to a 1 ,

and the whole cycle is repeated.

Program parameters: E a1 F
p ql F
E az F
p q2 F

E ar F
p qr F
E 8 ()

Notes: 1. If E 7 () is punched after the parameters instead of E 8 0, the cycle
will be repeated starting at the second exit, i.e., control will be transferred
q 2 times to a2 , q3 times to a 3 , etc.

2. If the following orders a re punched instead of E 8 () the cycle will
be repeated starting at the rth exit:

m I A m+2 F
m+1 E 7 ()
m+2 P 2r F

3. The subroutine may be made to repeat starting at any point in the
cycle by means of orders in the master routine which place suitable quantities
in 19 () a nd 20 () .

V1 Multiplication of vector by symmetric matrix.
Closed; even; 47 storage locations; working positions OD, 4, 5, 6,
and 7; time = (36n+18)n msecs.

Given a symmetric n-by-n matrix of which only 0.5 n(n+1) elements are stored
starting in mD, and given ann-vector stored in cD, (c+2)D, ... , (c+2n-2)D, this
routine will form their product and place it in sD, (s+2)D, ... , (s+2n-2)D.

SPECIFICATIONS OF SUBROUTINES 103

Preset parameters: 45 H P 2n F
46 N H cD C(cD) =first element of vector.
47 M v mD C(mD) = first element of matrix.
48 L1 T sD C(aD) = first element of product.
49 L y F included at head of library tape.
50 X p 24 0

Notes: 1. The matrix elements must be placed in the store in the following
order: 0

1 2
3 4 5

2. If it is desired to change the values of c, m, s in the course of the
program, this can be done by changes in the following psuedo-orders (a) H c D
in (P+26), (b) V m D in (P+27), and (c) T s D in (P+28), where p is the address
of the first order of the subroutine.

3. If it is desired to incorporate a left-shift in the multiplication, this
can be done by replacing the round-off order Y F, which is taken in in the form
of a parameter, at the head of the tape.

4. See Part ill for detailed program.

V2 Addition and subtraction of n dimensional vectors.
Closed; 25 storage locations; working position 1; time= (13+17.5n)
msecs.

Adds (or subtracts) the vector with components in the n long storage locations
ending in bD, to (from) the vector with components in the n long storage loca·
tions ending in aD, putting the components of the result into the n long storage
locations ending in cD .

Preset parameter : 45 I H I P 2n F

Program parameters:

For addition

P+2 1 A a D
P+3 P b-a F
P+4 0 c-b F

Note : See Part ill for detailed program.

For subtraction

P+2 1 A a D
P+3 K 4096+b-a'F
P+4 L c-b F

PARTin

PROGRAMS OF SELECTED LIBRARY SUBROUTINES

The following notation is used on all library program sheets.

Entry points:

Unconditional transfers
of control:

Variable orders:

Pseudo-orders:

Use of J:

Preset parameters:

Control combinations:

If control may arrive at an order by being
transferred there by an E or G order the
location of the latter (relative to the first
order of the subroutine) is shown on the
extreme left, with an arrow pointing to the
address of the order to which control is
transferred, e.g.,

16-23 T 6 0.

A horizontal line is drawn underneath
every E or G order which is intended to
produce a transfer of control each time
it is encountered.

Orders and pseudo-orders which are to be
changed during the course of the calcula­
tion are shown in brackets.

A double vertical line is drawn on the left
of the contents of all storage locations
which are intended never to be obeyed as
orders.

When reading the address part of an order
the initial orders treat the letter J as a
digit of value 10. Some subroutines there­
fore use J for the address 10, thus saving
one row of holes on the tape.

C(45), C(46) when used as preset
parameters are referred to as H param­
eter, N parameter ...

Any "order" with code letter K or Z is
a control combination. The more common
ones are described in Part I, Section 2-5,
and the less common ones in Appendix C.

104

PROGRAMS OF SELECTED SUBROUTINES 105

A3 Special arithmetical operations on real numbers in floating decimal
form.

See Part I, Section 4-82. In the store, x is represented by the number
2- 12 x0 + 2-9 Px · In the routine's "floating decimal accumulator" the number
a is represented by 2-2 a 0 in 10D and 2- 1 p 8 in 9. In the course of forming
xy, its representation is adjusted by a factor of 10, and its exponent corrected
accordingly. Thus (xy)o = 10- 1xoYo and P xy = Px + Py + 1. This is done to
prevent overflow in the numerical part of the floating accumulator.

Orders Notes

Part 1: order 3 in R2 is altered to S 40 D. Thus
the integers are placed in the store
negatively a nd become -1o-n, n = 0 ... 7

T 601T6
607T9 1 7 1 79 869 184 F
627T9 1 717 986 918 F
647T9 171 798 692 F
661T9 17 179 869 F
687T9 1 717 987 F
707T9 171 799 F
721T9 17 180 F
747T9 1 718 1T

T 567TZ '] (clears sandwich digit between 56 and 57) p F
T z

0 A 3 F
I] plant link order 1 T 55 9

2 A H /] 3 A 23 9 form and plant order to extract x
4 T 8 9
5 A N J 6 A 23 9 form and plant order to extract y
7 T 16 9
8 (A D) extract x tram store
9 u D copy in OD

10 L 256 F sh.~ft to remove exponent
11 u 4 D 2-" x 0 to 4D
12 R 256 F shift to form 2 - 12x 0

unpack x

13 s D cancel x 0 leaving -2"" 9 p x
14 R 16 F - 1

-2-lb Px to 0 15 T F j
16 (A D) ---,
17 u 12 D
18 L 256 F
19 u 6 D
20 R 256 F unpack y s imilarly

21 s 12 D

/J 22 R 16 F

106 ELECTRONIC DIGITAL COMPUTER

23 A F J -2- 15 (Px+Py+1) to 8 24 s 2 F
25 T 8 F
26 H 4 D

l•-4 XcYo to OD
27 v 6 D
28 y F
29 T D _j

30 H D

l•-' 10-1 x0 y0 to 4D and R

31 v 567T6
32 y F
33 T 4 D
34 H 4 D J
35 A 9 F

]form 2- 15 (pa-Px-Py -1) 36 A 8 F
37 E 45 (J jump if xy is smaller than a (approx.)
38 T F clear accumulator
39 H 10 D 2- 2 ao toR
40 A 4 D J 10- 1 Xo Yo replaces a o

interchange xy
41 T 10 D and a if a is the
42 s 8 F J Px+Py+l replaces P a

smaller
43 T 9 F
44 s F 2-15 (Px+Py+l-pa) to Ace.

37-45 L D multiply by 2
46 s 59 (J

47 E 54 (J jump if smaller component is negligible
48 A 58 (J] form and plant Norder referring to
49 T 50 (J appropriate power of 10
50 (N D) multiply C(R) by 1o-cJPa- Px- Py-lJ
51 A 10 D

] form sum and place in lOD 52 y F
53 T 10 D

47 - 54 T F clear accumulator
55 (E F) link order
56 L 1229 F

] 4/ 10 57 Y 819 F
58 N 767T8
59 p 16 F

(Storage locations 607T8 to 747T8 contain the constants -1o-n, n = 0 ... 7,
which are read before the orders)

Part 2: T 76 z
G K (puts new reference address in 42)
T 447TZ J (clears sandwich digit between 56 and 57) p F
T z

0 A 3 F] plant link order
1 T 43 (J

2 A M
] form and plant transfer order 3 A 13 (J

4 T 39 (J

5
22- 6

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

11--23
24
25
26
27

26-28
29
30

29-31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

PROGRAMS OF SELECTED SUBROUTINES 107

s 47 f)

A 47 0
T 1 F
H 10 D
v 10 D
s 447TfJ
E 23 8
H 46 f)

T F
v 10 D
L 4 F
T 10 D
A 9 F
s 2 F
T 9 F
A 1 F
s 46 f)

G 6 f)

T F
A 9 F
s 48 f)

G 28 f)

z F
A 49 f)

E 31 f)

T F
s 48 f)

T 9 F

R 256 F

I
I J count number of

adjustments

f] ju_mp t~ 23
if laot> 0.4

10/ 16 toR
clear accumulator

J multiply a 0
by 10

l

J correct Pu
accordingly

J count number of
1
J

adjustments
_J

1 dear accumulator

]
jump if

Pa < 511

stop if Pa2.511

]jump if Pa2.-511

I clear ace. if Pa< -511

Adjust representation of a
by multiplying ao by 10 and
decreasing Pa by 1. This
cycle is repeated until either
laoi>0.4 or 10 adjustments
have been made (to provide
for a o = 0)

If Pa2.511 , s top the
machine. If Pa<-511,
replace Pn by -511

A 10 D I
~ 16 ~ Pack a and place
A 9 F I in store
L 16 F form 2- 9 p +2-12 a0 1

(T D) I j
T 10 D I
~ 4~ ~ I] clear floating accumulator

(E F) I link

~ 3~7 ~ !] 1/ 100 (rounded down)

J F I 10/16
7T F 11/16
p 511 F I
P 1022 F

108 ELECTRONIC DIGITAL COMPUTER

A5 Special arithmetical operations on complex numbers in floating
decimal form.

See Part I, Section 4-82. In the store, z 1 is represented by 2-2 (x l)o in rD
and 2- 2 (y 1lo in (r+2)D, each rounded off to 28 binary places. The last 6 digits
of these locations contain the most and least significant halves respectively
of the 12-digit integer p, the left-hand digit of which is treated as a sign digit.
In the routine's "com~lex floating accumula~or" the number Ze. is represented
by 2-2(xe.)o in 140, z- (ya)o in 160, and 2- lo P a in 18F. In the course of form­
ing Zl Z2 = z3, its representation is adjusted by a factor of 10, and its exponent
corrected accordingly. Thus (z3)0 = 10-1 (z l)o (z2)o and P3 = Pl + P2 + 1. This
is done to prevent overflow in the numerical part of the "accumulator."

Part 1: order 3 in R2 is altered to S 40 D. Thus the follow­
ing integers are read negatively and become -lo-n,
n = 0 ... 8.

T ll07TO
ll07T0 1 17 179 869 184 F
1127r& I 1 717 986 918 F
1147TB I 171 798 692 F
1167r& j 17 179 869 F
1187TO I 1 717 987 F
1207r& / 171 799 F
1227r&i 17 180 F
1247TBI 1 718 F
1267T6i 1727T

0
1
2
3
4
5
6
7
8
9

I T Z

I ~ 10~ : J plant link

I AA H
105 6

I u 17 6
I u 26 e
I A 200 e
u 19 e
T 28 e
A N
A 105 (I

21 e u
u 34 e
A 200 e
u 23 e

add CD

add P 2 F

add CD

add P 2 F

l fo'm and plant o'"'"
to extract z 1

form and plant orders
to extract Zz

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

T
H

(C
T

36 e I
1947TI:l prepare to collate numerical parts

(C
T

(C
' T

l<i

4 ~) ~! J 2-2 (x l)o to 4D

6 ~) 1 J 2-2 (y i)o to 6D unpack numerical parts

10 ~) J 2-2 (x2)o to 100

12 ~) J 2- 2 (y2)o to 120

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

64 - 66
67
68
69
70
71
72
73
74

PROGRAMS OF SELECTED SUBROUTINES 109

H 19617'8 prepare to collate exponents
(C D) most significant half of Pl

(~ 16
;) least significant half of p ll r : e J shift to top of Ace. to get j unpack P1

L 8 F _ top digit in si~n pos ition (exponent of z 1)

R 8 F IJ shift to form z- ~ 6 Pl and
T F send to 0 _

~~ 16 ~: ll
T 8 D I unpack pz similarly

~ : ~ ~ I
R 8 F IJ
A F '
A 203 0 I add 2- 16] 2- 16 (P l+P2+1) = 2- 16 ru to 8

8 F I A
H
N
H
v
y

6 D
12 D
4 D

10 D
F

4 D
12 D

6 D
10 D

F
6 D

H 106rr0
V 4 D

T
v
H
v
y

T

y
T
v
y

T
A
s
E
T
A

2-4 [<xl)o(x2)o - (y l)o (Y2lo]

= 10.2-4 (x3)o to 4D

form numerical
parts of product

Prepa re to align num­
bers for addition. If
one number is negligibly
small compared with the
other, jump to 101 or 96,
by-passing the addition.

110

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

79-96
97
98
99

7~ 100
95 -101

102
103
104
105

106
107
108
109

ELECTRONIC DIGITAL COMPUTER

A 19 F]
~ 1 ~ ~(j form 2- 15 [2(pm-Pa)- 18]

s 108
E 96 8 jump if P3LPa+9

A 109 8 Jl U 85 8 form and plant the order
T 91 (J J H [110 + 2(Pm-Pa)J:rr8

(H D)
N 4 D

(H D)
N 14 D
y F
T 14 D

(H D)
N 6 D

(H D)

J align and add
real parts

N 16 D l a lign and add
imaginary part s

F y
T 16
E 101

D
(j

T
A
T
A
T
T

F
4 D

14 D
6 D

16 D
F

A 19 F
T 18 F
E F)
C D

clea r accumulator

]
replace (za)o

by (z3)o

clear accumulator

J replace Pa by Pm

link

If Pa>P3, (za)o is multiplied
by 1 and (z3)0 by a negative
power of 10, and vice versa

~ 106:rr~ J (clears sandwich digit between 106 and 107)

T 106 Z

L 1229 FF _jl 4/lO
y 819
P 18 F
R 128:rr8

(Storage locations 110:rr(J to 126:rr(J contain the constants -10-n, n = 0 ... 8,
which are read before the orders)

Part 2: T 128 Z
G K (puts new reference address in 42)
T
p

T
p
T

J (clears sandwich digit between 62 and 63)

64:rrZ J
~ (clears sa ndwich digit between 64 and 65)

62:rrZ
F

PROGRAMS OF SELECTED SUBROUTINES 111

0 A 3 F J plant link
1 T 61 I)

2 A M

J form and plant tran,fer ordm
3 A 17 0
4 u 56 I)

5 A 72 A

6 T 50 I)

7 s 70 I) J count number 29-- 8 A 70 I)
of adjustments

9 T 19 F
10 H 14 D
11 v 14 D
12 H 16 D }ump to 30 H
13 v 16 D \(za)o\ >0.4
14 s 62rr13 Adjust representation of
15 E 30 I) Za by multiplying (za)o
16 H 71 I) 10/16 to register by 10 and decreasing Pa
17 T D clear accumulator by 1. This cycle is re-
1"8 v 14 D peated until either
19 L 4 F j(za>o\>0.4 or 10 ad-
20 T 14 D J multiply (z,)o justments have been made
21 v 16 D by 10 (to provide for (za)o = 0).
22 L 4 F
23 T 16 D
24 A 18 F J correct Pa 25 s 75 I)

26 T 18 F
accordingly

27 A 19 F J count number 28 s 71 I)

29 G 8 I)
of adjustments

15-30 T F clear accumulator
31 A 18 F J jump if Pa<2047 32 s 73 I)

if Pa-22047 stop machine.
33 G 35 I)

34 z F stop if Pa22047
If Pa<-2047 replace Pa

33--35 A 74 I) J jump if Pa 2 -2047
by -2047

36 E 38 (}

37 T F clear Ace. if Pa <-2047
36-38 s 73 I)

39 T 18 F
40 A 14 D

}ound off (z,)0 to 28 binary plaoe'

41 A 641T9
42 T 14 D
43 A 16 D
44 A 64rr9
45 T 16 D
46 H 667T6
47 c 16 D J a"emble (y ,)0 with lea'! 'Jgn!Iicant 48 H 68rr9
49 c 18 D

half of Pa and transfer to store

50 (T D)

112 ELECTRONIC DIGITAL COMPUTER

51 A 18 D J shift p, so that its most significant
52 R 16 F
53 T 18 D

half is at right-hand enq of 180

54 c 18 D
55 H 667T9 J"emble (x,)0 with most signifl<ant
56 c 14 D half of Pe. and transfer to store
57 (T D)
58 T 14 D
59 T 16 D }''"' "oomplex float"!)' accumulate<,"
60 s 73 9 i.e., put Z e. = 0.2-204

61 T 18 F
62 (E F) link order
63

II~
F dummy order

64 16 F
65 F

i:' 166 s 2 F J form and plant

T' R 1024 F l these a<de<s a<e obeyed once
8. 68 T 661T9

C(661r6) during input of tape and then
a s9 T 681T9 written over
~ 70 E 25 F

E 66 z final C(661r6) = -2-28

p D
T 58 z

68 p 31 D
69 p F
70 1T F 11/16
71 J F 10/16
72 p 2 F
73 p 1023 D
74 P2047 F
75 p D
76 M 81 D J 1/100 (rounded down)
77 p 327 D

AlO Print single floating decimal number (used with All).

G K

[0
0 55 9 carria ge return

enter 1 0 56 9 line feed
-2 A 3 F

]plant link 3 T 54 9
4 s D
5 L 32 F

}epa<ate numedcal P'"t x (negatively) 6 u 4 D
7 R 32 F

and exponent p

8 A D
9 R D accumulator contains 2-7 p

10 E 15 9

11
12
13
14

10-15
14,17-16

17
18
19
20
21
22
23
24
25
26
27
28
29
30

26-31
30------+-32

33
34

33---+35
36
37
38

50,53-39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

0
T
s
E
0
A
E
s
L
T
0
0
0
0
s
E
T
s
0
E
0
A
G
A
s
T
H
A
L
T
0
A
F
s
L
T
N
T
A
E
0
L
G

(rr

II~
0
p
p

A

PROGRAMS OF SELECTED SUBROUTINES

2 (}

D
D

16 (}

57 (}

601T9
16 (}
60 (}

2 F
D
F

1 F
57 (}

57 (}

4 D
31 (}

D
D

2 (}
32 (}
57 (}
587T6
35 6
43 (}
59 (}

D
59 6
62 6

D
4 F
1 F

D
F
F

4 F
D
D
D

4 F
39 6
57 6

D
39 6

F)
F
F
F

54 z
F
F

1 D

J

J
,___

J

J

-

-

J

J

print "-" J
modulus p<O

print space (p2.0)
add -10.2-7 +2-25]divide by 10

(subtract and count)

print tens digit of p
print units digit of p

spaces

accumulator contains 2-4x

modulus J
. (x<O)

- s1gn

print space (x2.0)
round off and test for x = 10
arrange to print # if

accumulator is positive
add 10.2-4

-10/16 to register
add digit layout parameter

digit cycle

digit layout

figure shift or link
carriage return
line feed
space

figure shift, carriage return and
line feed during input of tape

113

114

59

58

60
61
62

ELECTRONIC DIGITAL COMPUTER

liN F]= (-10 + ~. 10-6). 2-4 T 58 z
liP 268 D
T 60 z r 256 F]= -10.2-7 + 2-25
c 1536 F
s 128 F digit layout constant

All Arithmetical operations on real numbers expressed in floating
decimal form.

For representation of numbers see Part II. The number in the floating
decimal accumulator (f.d.a.) is here referred to as y·10q, and the operand as
X·10P.

Parameters:
Preset: H I P s D l l t' f numerical part of f.d.a. N P t F oca wn o exponent

Preset by subroutine:

97TM
117TM
137TM
157TM
177TM
197TM
217TM
237TM

0
94-1

2
3
4
5
6
7
8
9

10
11
12
13
14
15

M I p 103 (J
.1 p (J

L E 56 0

E 69 K I
T 97TM
1 71798 69183 F

17179 86918 F
1717 98692 F

171 79869 F
17 17987 F

1 71799 F
17180 F
171817'

z T

I dynamic stop order

1
10-l
10-2

10_3

10-4

10-5

10-6

10-7

46 (J

2 F
(} 3
J prepare order 3

A
A
T

(H F) select parameter
9 M c

E 20 (}
R 256 F

entire parameter to accumulator
jump for E or T parameters

A M
T 19 (}
c 1 M

(J T 11
(A
u
L
R
u

F)
22 (J

32 F
32 F

D

10 pl. J Form switch order specifying
address depending on parameter
function

] form A order specifying
same address as parameter
select operand

store top of operand

J remove exponent p

numerical part x·z-10 to OD

A, B, and V para­
meters: unpack
operand

PROGRAMS OF SELECTED SUBROUTINES 115

16 s 22 9 J -2- 14 p to 229 J 17 R 64 F
18 22 9
19 *

5-20 J parameter to 229 and 649
21
22 **
23
24 30 J il number in f.d.a. '' 25 T H
26 A 23 9

positive, change sign

27 T 63 9
and set order 63 to A H

28 s H
29 E 61 9 test if f.d.a. contains zero

24-30 A 2 M form (10-y) · 2- ll
31 E 49 9
32 H lln:M 1/10 to re~ister

39-33 T H (10-y) . r 1

34 A 5 M J adjust exponent
cycle to multiply

35 A N
36 T N

y by negative

37 v H
power of 10 if

38 A 4 M add 9.2- 11 necessary

39 G 33 ()

40 E 49 9
50-41 T H

42 s 5 M J adjust exponent
43 A N
44 T N cycle to multiply

T parameters

45 A H }•o y by positive
only

46 L 1 F power of 10 if
47 A H necessary
48 L D

31,40-49 s 4 M sub. 9·2-ll
50 E 41 9
51 s 3 M sub. 2- 11

52 y F
53 T H '";"l,ralue of -y·T n 1 OH
54 A N q·
55 s 6 M
56 p L dynamic stop if q2.63
57 A 7 M

examine

58 E 61 9 jump if q2.-63
exponent

59 T H J set y = 0 if
60 T H q< -63 _j

29,58-61 s 6 M re-form q·2- 14

62 L 64 F 2-G q.
63 (S H) add y·2-11 t
64 (T D) to store tt

116

65
66
67
68
69

19-70
71

19-72
73
74
75

19-76
77
78
79
80
81
82
83

75-84
85
86
87
88
89

101,102-90
69-91
85-92

93
94

76 - 95
96
97
98
99

100
101
102

M 0
1
2
3
4
5
6
7
8

ELECTRONIC DIGITAL COMPUTER

A 28 9
T 63 9
s 6 M
T N
E 91 9
s D
T D
H D
A N
A 22 9
E 84 9
E 95 9
T 64 9
H H
A D
T H
s 22 9
T N
s 64 9
s 3 M
E 92 9
A 8 M
T 88 9

(V D)
A H
y F
T H
T 64 9
A 3 9
G 1 9
s 22 9
A N
T N
H D
v H
L 512 F
E 90 9
G 90 9
E 78 9
A 1023 D
p 160 F
p 16 F
p 144 F
p 2 F
p 126 F
p 252 F
v 25rrM
T 128 z

J reset 639 t

J set q = -63

J change sign of x if
to be added

subtrahend to register

J form z- 14 {q-p)

jump if qL.p
ttt
-2-14 (q-p) to 64

l
J larger num-

interchange
. 1 t ber to f.d.a. numenca par s

J larger exponent
to ON

2- 14 (q-p) to Ace.

J jump if smaller number
is negligible

J divide numerical part
of smaller number by
appropriate power of 10

combine numbers

sum of difference to OH
clear accumulator

J prepare to change order 3

J add exponents

A and B para­
meters only

J multiply numerical
parts

V parameters only

= 10.2-11
= 2-11
= 9.2"11
= 2-14

= 63.2- 14

= 126.2"14,

PROGRAMS OF SELECTED SUBROUTINES

*Order 19 switches as follows:
if parameter function is A to 70 0
" " B to 72 0

" V to 76 0

117

** 220 contains the parameter itself if the function is E or T (in the
latter case the order plays no part in the calculation), otherwise 220 is used
to store -p·2- 14.

t Order 63 is always S H unless a T parameter is being obeyed and y
is negative, in which case order 63 becomes A H.

tt 640 holds the parameter itself if the function is E or T (in the former
case 640 is not encountered bf, control); when dealing with A and B parameters,
640 is used to hold -lq-pl · 2- 4 • For all parameters (except E) , 640 is used
as a "dump" by order 92 to clear the accumulator .

ttt If control reaches order 76 from order 75, C(Acc.) must be <O and
control proceeds to 77. If 76 is reached from 19, C(Acc.) must be =0 and
control is switched to 95.

B2 Complex operation No. 2.

Performs operations (including multiplication) on complex numbers.
Uses as " multiplier register" H (real part) and 2H (imaginary part) .

46F p 47 0 N parameter
T 50rrZ]These orders do not go into the store but
p F merely serve to clear 50rr0 to ensure

that the "sandwich digit" is zero when
the constants PD and PF appearing at
the end of the subroutine, are planted there.

T z
0 A N J forms A n+2 F

39~ 1 T 2 0
2 (A F)
3 u 16 0 J plants order to be obeyed in
4 u 26 0 16 and in 26
5 A N increases address of order by 2
6 u 30 0
7 G 40 0
8 T F clears accumulator
9 A 17 0 J places ineffective order in 18, 26 10 u 26 0

46-11 T 18 0
for operations other than V or N

12 A 4 H J multiply by 2-34 • "unpacks" 13 H 3rrN
14 v 6 H

real accumulator

15 H H

]ope<ation on'""' put 16 (V F)
17 H 2 H
18 (N F)

118

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

T-40
41
42
43
44

41-45
46

N 0
1
2
3
4
5

C7

0
1
2
3
4
5
6
7
8
9

10

u
s
L
L
L
T

I
A !

(V
H
v
H

(V
u
s
L
L
L
T
A
A
G
A
E
A
E
A
s
G

I I
p
Q

I I
p
p

J

ELECTRONIC DIGITAL COMPUTER

4 H
4 H

F
F

64 F
6 H
8 H

F)
37TN
J H

H
F)

8 H
8 H

F
F

64 F
J H
2 F
2 (j

1 (j

1 N
45 (j

2 N
8 (j

5 N
5 N

11 (j

2 F
F
F
D
F
F I

} 'pack'" 'eal accumulato'

l "unpacks" imaginary accumulator
I and performs operations

] 'pack'" lmaglouy accumulato'

]test for V

]test for N

Check function letters, with localized print suppression.

T z
(L1 F)
(P F)
Q F
A F
(j F
L1 F
7T F
K3000 F
p H
p N
p M

33-11
12
13
14

13--15
16
17

58 - -18
19

17-20
21
22

45-23
24
25
26
27

Enter-28
29
30
31
32

30l_ -33
31~34

35
36
37
38
39
40

39 - 41
42
43
44
45

16-46
47

16 - - 48
47 - 49

50
51
52
53
54
55
56
57
58

PROGRAMS OF SELECTED SUBROUTINES 119

u
s
E
A
s

(E
E
0
0
u
s
A
A
u
s

(A
u
A
s
(0
E
A
E
u
s
A

26 () store address of C.O.

1: : ,-J ; : i tes t for change of mode

46 Ll)* I
20 Ll I
4 () h .
5 0 :j new lme

37 e I]
37 0 I clear top of accumulator

3 () !

26 ()
26 ()
26 ()

F)
37 ()

()

3 ()

s.o.

J

Transfer
control

l
37 ())
34 ()

2 ()

becomes E 34 () for suppression

11 ()
()

()

1 ()

Checking
cycle , s imi­
lar to that
employed in
Cll

(K 3000 F) c.o.
u
G
A
s
u
s
A
E
0
E
0
u
s
s
A
u
s
s
A
u
E

1 ()

41 ()

5 ()

1 ()

()

()

2 F
23 ()

6 ()

49 Ll
7 ()

37 ()

37 ()

16 ()

59 ()

16 ()

16 ()
30 ()
60 ()
30 ()
18 ()

figure shift

letter shift

Change of mode of operation
from printing to suppressed
or vice versa

;

120 ELECTRONIC DIGITAL COMPUTER

G z
59 II~ 35 () = c 94 ()()
60 12 () = s 71 ()()

G K
W2015 z = E 28 Z: stops reading of tape and directs
E L control to order 28 with E L in the accumu-

lator .

*Order 16 takes the following forms :

Print low
Print high

Printing

E 46 8
G 46 8

Suppressed

G 48 8
E 48 8

C10 Numerical check, ignoring closed subroutines; will print C(Acc.)
before obeying T orders.

Note: Code letter H refers to locations in the first part of the subroutine and
() to locations in the second part.

H 0
1
2

10H- 3
4

318-5
6
7
8
9

10
11
12
13

4H-14
15

30H-16
17
18
19
20
21
22
23
24
25
26
27
28

E
T
A
T
E
0
E
s
E
s
T

(rr
E
T
s
0
T
s
A
T
A
R
s
R
A
u
0
F
s
L
T

25 K
H

3 F
F
F

2 ()

14 H
6 ()

32 ()

2 H
9 H

F)
3 H

rrfJ
1T8

H
rrO

33 H
2 F
9 H

1T8
1 F

rrO
D

rr(J
(J
()

()

()

4 F
rrO

I

I

dummy print routine

print+

J form A p F/D if order T p F/ D
is encountered

becomes A p F /D
tes t s ign

J change sign

print -

J s et digit count in 9 H

J multiply by 10/ 16

}mt

Print number
transferred
by T order

29
30
31
32
33

166---34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

PROGRAMS OF SELECTED SUBROUTINES

A 9 H
G 16 H
T 7T6
E 34 6

liP N
A 2 H
s 12 6
G 19 6
s 2 F
E 19 6
0 3 6
A 20 6
A 12 6
s 26 6
u 12 6
u 47 H
s 5 6
T 50 H

(P F)
T 22 6
A 40 H

(P F)

J digit count

clear accumulator
to sequence control
number of digits

l test for order A n F in J S(n), i.e., S.O. = C.O.

line feed

J form A n+2 F

form G n+1 F

J

=; C(Acc.) or A n+2 when
subroutine is encountered

sign of C(Acc.) or G n+1 F when
subroutine is encountered

121

Test for
entry to
closed sub­
routines
and obey
them
directly

When an order A n F is encountered in n, the order in (n+2) is placed in the
C.O. position and control is transferred to (n+1) with A 20 6 in the accumu­
lator. Since there is a G order in (n+ 1) control is transferred to the subrou­
tine and the link which is planted in the subroutine is E 22 6 (or E 23 6 if the
subroutine has one program parameter). When the operation of the subroutine
is finished control is transferred to order 226 (or 236) of C10 and checking
recommenced.

T
6 0 (P

1 (P
2 z
3 .1
4 6
5 Q
6 Q
7 A
8 T
9 A

10 T
11 0
12 0
13 0
14 E
15 liE

E
p

1

47
15

4
3
9

25
21

7

z
F)
F)
F
F
F
F
F
M
H
6
M
6
6
H
F
6
z
F

J working space
for print cycle

J extracts order at which checking
starts and replaces it by order
directing control to C10 (order 216)

carriage return
line feed
figure shift

122 ELECTRONIC DIGITAL COMPUTER

The orders 7 to 14 are executed once during input, and then written over by:

T 7 z
189- 7 0 4 9 carriage return

8 0 3 9 line feed
9 s 2 H form A n F when control is transferred

369 -10 u 12 9
11 s 12 ()

12 (G 2047 M) =A -1 M, becomes select order (S.O.)
13 u 22 9
14 A 50 H l '"' fo< t<an,fe< of coniTol

....;
15 s 2 H
16 G 34 H

u

17 s 6 9
.s
'0

36HJ- 18 G 7 9 CIJ
>.

38H 19 u 50 H 0
0.

20 s 50 H a
Enter-21 A 47 H Add "C(Acc.)" Q)

22 (T M) current order (C.O.)
.....
~

23 u 47 H transfer "C(Acc.)"
0

24 E 26 9
25 s 3 9

s.. l te't C(Acc.) fo< ''""'
,g

249 -26 s 47 H if - send 1/ 2 to 50H ·s
27 u 50 H

fiJ

28 s 50 H ~
29 A 22 9 t) J examine C.O. and test >.
30 s 1 H t)

31 E 5 H
forT order biJ s::

6H-32 u 22 9 ..!<:
t)

33 s 22 9 CIJ ..c::
32H - 34 A 12 9 J sequence control

u
35 A 2 F
36 G 10 9 _j

During the course of this subroutine the 17 most significant digits of C(Acc.)
are stored in 47 H and are restored when an order from the original program
is executed.

C11 Check function letters.

G K
0 (P F) sign of C(A)*
1 (P F) C(A) stored
2 9 F
3 .1 F
4 A F
5 Q F

18 - 6 A 4 9 form new S.OJ
7 0 2 9 J 1. transfer control
8 0 3 9

new me

31-9 u 11 9
]plant S.O.

10 s 11 9

PROGRAMS OF SELECTED SUBROUTINES

11 (Z F) select order (S.O.)
12 u 22 9 plant C.O.

Enter-13 0 22 9 print function***
14 s 9 subtract .1F if C(A)<O*
15 A 4 (J J test lor transfer or control"
16 E 19 9
17 A 5 9
18 E 6 9

16-19 u 9 J clear top of accumulator
20 s 9
21 A 1 9 restore C(A)
22 (K3000 F) current order (C.O.)
23 u 1 9 store C(A)
24 E 26 9
25 A 3 9 l store slgn or C(A)• and clear 24-26 s 1 9
27 u 9

top of accumulator

28 s 9
29 A 11 9 J advance address specified 30 A 2 F
31 G 9 9

in s.o.
E 13 z

Followed on tape by

\ E m F I punched by user. Hence control enters at
order 13, withE m Fin accumulator

Notes: C(A) refers to the 17 most significant digits which would be in the
accUmulator if the original program were operating directly.

C .0. = current order, the order in the original program which is
being dealt with.

123

S.O. = select order, the A order which selects the current order from
the original program.

*sign of C(A) is stored in 6 coded thus: .1F for negative
PF for positive or zero

**after executing order 146, the function digits in the accumulator
represent E if and only if a transfer of control is to occur.

***on entry, order 136 causes a letter shift.

C12 Check function letters, with dummy print routine and delayed
start.

0
1
2
3
4

Places "blocking order" in h and commences checking when
blocking order is obeyed for the nth time.

T z
A 3 F J dummy print routine T F
E F

II(! 6 6) (1) blocking order (2) counter (3) -2-15

F

124

5
H-6

7
8
9

10
11
12

25-13
14
15
16
17
18
19
20
21
22
23

38--16
17
18
19
20
21
22
23
24
25

23-26
27

8 28
29
30
31
32

31- 33
34
35
36
37
38
39

I

ELECTRONIC DIGITAL COMPUTER

11.1
(A 3
A 2
E 28
T 3

(K3000
E 1
G 1
s 2
0 4
0 5
0 J
A
T J
A 3
T
s 46
T 3
E 34
E 14
p

T 16
u 18
s 18

(G2047
u 29
s 6
s 2
0 29
G 26
s 39
G 13
u 6
s 6
A J

(T
u J
E 33
A 5
s J
u 6
s 6
A 18
s 3
G 16

IIQ

F
9)
F
9
9
F)
H
H
9
9
9
9
H
9
9
H
F
9
F
z
F
'l
9
9
H)
9
9
9
9
9
9
9
9
9
9
H)
9
9
9
9
9
9
9
9
9
F

(1) A 3 9 (2) sign of C(Acc.)*

J count

(1) letter shift (2) order from H (3) store C(Acc.)

J return to 1H

temporary , during input

s.o.

checking cycle as in Cll

c.o.

*sign of C(Acc.) stored thus: PF = positive or zero
.1F = negative

10-

PROGRAMS OF SELECTED SUBROUTINES

D4 Division, small; positive divisor.

Repetitive process: an+l = -anCn + an ao = dividend
Cn+l = -ct, co + 1 = divisor

Stop when Cn = 0.

T z
0 s 2 0 J subtract 1
1 A 3 0
2 T D Cn
3 H D

]~1 4 N H
5 A H repetitive cycle
6 y F
7 T H
8 N D J Cn+l 9 y F

10 G 2 0 test for Cn+l = 0

D6 Division, accurate , fast.

C(OD)/C(4D) to OD.

a n+l =an- Cn+l an + Cn+l

Cn+l = -anb + (b-1), where b is the shifted divisor

i- a,-,~1/b

Cn~O an and en are negative

125

ao = 2b - 2 V2 + 1; therefore Cn is negative until process is completed

0
1

7 2
3
4
5
6
7

14-8
9

10
11
12

3---13
14
15
16
17
18
19
20

G
A
T
s
E
T
s
T
E
T
A
L
T
A
L
E
R
u
L
A
T
E

3
34

4
13

4

2
4

4

8

4

35
6

25

K
F
0
D
0
D
D
D
0
D
D
D
D
D
D
0
D
D
D
0
D
0

J plant link

l make divisor positive and
change sign of quotient

shift divisor and dividend until
divisor exceeds capacity

b-1 to 4D

ao to 6D

126

30-21
22
23
24

20-25
26
27
28
29
30
31
32
33
34
35

ELECTRONIC DIGITAL COMPUTER

U 8 D
N 8 D
A 6 D
T 6 D
H 6 D
S 6 D
N 4 D
A 4 D
y F

Cn+1 to 8D
-C n+1 • an
+an
+an+l to 6D
a n+1 to multiplier register
a n
-(b-1) · an
+(b-1)

~ 21 ~ ~=J=-'t:..::.e=-st=- accumulator contains 2-34

V D form quotient

T D
(E F)

IIW1526 D
link
3 - 2V2

E2 Exponential (slow).

(ex -1) to 4D, where x = C(4D)
z~

Uses a recurrence relation Zn-1 = Zn + 2llTI starting with

zz3 = x and ending with z 0 = (ex--1)

0
1
2
3

16-4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

G K
A 3 F
T 18 ()
y F
L D
T 6 D
H 4 D
V 4 D
T D
H 6 D
V D
R D
A 4 D
y F
T 4 D
A 6 D
L D
E 4 ()
T D

(E F)

]plant link

J 2-n to 6D.

]form z ~

z~/2n
z2;2n+1

]zn + z~/~+1

Zn-1 to 4D
shift strobe

test strobe for end of cycle

link

E4 Exponential, fast. Exp C(R) to OD

G K
E 69 K
T 18rr9

calls in R9

1811'0
2011'0
2211'0
241!'0
2611'0
2!!11'0
3011'0
3211'0
341!'0

0
1
2
3
4
5

13-6
7
8
9

10
11
12
13
14
15
16
17

F1

PROGRAMS OF SELECTED SUBROUTINES

2 600 54 F
06 F
78 F
73 F

31 239
235 853

1430 072
7157 739 46 F coefficients in power series

28633 011 49 F
85899 335 88 F

1 71798 691 47 F
1 71798 691 84 11'

T z I A 3 F
T 14 f) I
v 1811'8

I A 2011'8
T D

J plant link

J form as + a gx

s 17 0 set power series cot..:>•tr
A 16 0
T 9 f)

v D
(A D)
T D
A 9 f)

s 15 f)

G 6 0

~form a1 + a 2x + •. .

J
(E Fl link

II~
3411'8
3611'8
14 F

T 36 z

Interpolation.

127

The subroutine places f [2nC(4D)] in 10D. The process used is that
described in Milne's Numerical Calculus, p. 72, and known a~ Neville ' s
method.

48F (P F) I (becomes P 2b 1!'8) L1 para meter
49F (P F) (bec omes P 2b D) L para meter
50F p 61 0 X parameter

T z
0 A 45 F
1 u 49 F send P 2b D to 49
2 A 42 F
3 T 48 F send P 2b 1r8 to 48
4 s 2 F
5 R M
6 L 64 F
7 L 32 F
8 T 45 F send -2-n to 45
9 A 46 F

128 ELECTRONIC DIGITAL COMPUTER

10 R M
11 L 64 F
12 L 32 F
13 T 46 F send a2- r. to 46
14 E 25 F

E z
p F

This sequence of orders calculates the parameters required by the subroutine:
these orders are written over by the orders following:

T z
9- 0 T 20 F J partial sum times 10

1 v D
2 L 8 F
3 s 40 D subtract new digit

14- 4 u D
5 (T F) = T 66 L\
6 I 40 F J read next symbol
7 s 40 F
8 A 39 F
9 E () test for F

10 A 2 F
11 E 25 F test for Z
12 A 5 () change destination order

Enter~13 T 5 ()

14 E 4 (}

E 13 z
T 66 L\

66L\ 1 71798 69184 F
64L\ 85899 34592 F
62L\ 57266 23061 F
60L1 42949 67296 F
58.1 34359 73837 F
56.1 28633 11531 F
54 L1 24542 67026 F
52 L\ 21474 83648 F
50L1 19088 74354 F
48.1 17179 86918 z

These orders place -1, - 1/2, ... -1/10 in positions 66.1, 64.1, ... , etc., and
are then written over by what follows

T z
0 A 3 X
1 u 11 () form A P+2 F
2 A 7 ()

3 T 60 () formE P+3 F
4 H 1 X J collate "integral" part of C(4D)
5 c 4 D

PROGRAMS OF SELECTED SUBROUTINES 129

6 s 2 X
subtraot a l 7 u 1 F

8 R 32 F form address of first entry
9 R 32 F of the table usE:d.

10 L M
11 (A F) = A P+2 F
12 T 16 0
13 A 4

~ I 14 s 1
15 T 4 D
16 (A F) add first entry used
17 T 10 D transfer to lOD
18 A 167TO
19 E 21 0

58-20 A X
19-21 A 37TX

22 T 267TO
23 A 4 D J modify argument 24 A 1 X
25 T 4 D
26 (A D) add next entry of table required
27 (T D)
28 A 27 0 l
29 s 59 0

55---30 A 17 0
31 u 52 0
32 A 6 X

form orders required in locations
33 u 41 0
34 A 7 X

400, 410, 490, 500, and 520 for

35 u 40 0
successive linear interpolation.

36 u 50 0
37 s 27 0
38 A 8 X
39 T 49 0
40 (A D)
41 (S D)
42 T D
43 H D
44 v 4 D
45 L M
46 y F linear interpolation
47 T D
48 H D
49 (N D)
50 (A D)
51 y F
52 (T D)

130 ELECTRONIC DIGITAL COMPUTER

53 A 52 0

'] oount numbe• of tnt.,polatio"'

54 s 59 ()
55 E 30 ()
56 A 26rr()
57 s 5 X
58 G 20 ()
59 T 12 D clear accumulator
60 (E F) link

X 0

II:
8 L

1 H = -2-n
2 N = a2-n

T 64rrZ
4 liP 2 F

T 64 z
3 liP 2 F

T 66 z
5 T 6 L
6 u F
7 K4098 F
8 v 66 .1

E 25 K
T 67rrL1

The subroutine is of variable length. The number of reciprocals required
depends on the number of entries used in the interpolation. Their position
is so arranged that those not required are written over by the orders of the
subroutine.

F2 Solution of f(x) = 0, or inverse interpolation (second-order
process).

Working space is allocated thus :
hD Xc

(h+2)D Xa
(h+4)D Xb
(h+6)D -f(xa) = -fa (say)
(h+8)D -f(xb) or -2-mf(xb) = -Fb (say)

Xa and Xb are two values of x such that f a and fb have opposite s igns. Xc is a
va lue obtained by linear inverse interpohttion between Xa and x b. The auxil­
iary routine places fc in OD. If the sign of fc is opposite to that of fa, then Fb
is replaced by f a and f a by f0 , also xb by Xa and Xa by x 0 • If the sign of f0 is
the same as that of f a, then fa is replaced by fc and X a by Xc , and also Fb is
halved. This latter operation prevents Xb remaining unaltered for many cycles ,
as this would cause the process to become a first-order one, or fail to converge
altogether. At the start Xa and Xc are the given values x1 and x 2, and the fa
position is cleared. This ensures that initially f a and fc are treated as of op­
posite sign, and the first two function-values to be calculated are f(x~ and
f(x 2). The process terminates either when f c = 0 or when lxa-xbl .:::;.2- 4

47F

0
1
2

56-3
4

Aux- 5
6

54------- 7
8
9

10
11
12
13
14
15
16

10-17
18
19
20

16-21
22
23
24
25
26
27
28

24-29
38-30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

PROGRAMS OF SELECTED SUBROUTINES

.1 F
T z
A 3 F
T 7 (J

T 6 H
A 3 (J

G N
H D
N D

(Z F)
T 4 D
v 6 H
G 17 (J

T 4 D
A 2 H
T 4 H
A 6 H
T 8 H
E 21 (J

T 4 D
A 8 H
R D
T 8 H
s D
u 6 H
s 8 H
E 29 e
T 4 D
s D
T D
s 4 D
A 57 9
T 4 D
y F
H 4 D
N D
A D
T D
N 4 D
y F
G 30 9
H D
A H
u 2 H
s 4 H
T D
A H
v D
y F
T H

M parameter

]plant link

clear (h+6)D

J call in auxiliary subroutine

] test whether f 0 = 0
link
clear accumulator

J test relative sign of fa and f 0

clear accumulator J
]xa to Xb

opposite signs
]fa to Fb

clear accumulator J J halve Fb same sign

J~ to fa

form -f fc f in OD by division process
a - c

similar to that used in 07

J plant new x a

J(xa -Xb)toOD

}wx,

131

132 ELECTRONIC DIGITAL COMPUTER

48 A D
49 G 52 8
50 T D
51 s D test for lxa - xbiS.2-34

49-52 R D
53 y F
54 E 7 8
55 T D clear accumulator
56 E 3 8 repeat
57 IlL! M = -1

F3 Differencing and checking subroutine No. 1.

T z
0 A 3 F J plant link 1 T 24 8
2 A D l fo'm fouth diff.,ence
3 s H
4 s 2 H
5 s 4 H
6 s 6 H
7 u 8 H
8 A 6 H
9 u 6 H

10 A 4 H
11 u 4 H plant differences and new function value
12 A 2 H
13 u 2 H
14 A H
15 T H
16 A 8 H
17 G 20 8
18 T 4 D
19 s 4 D

test fourth difference
17-20 A 10 H

21 E 23 8
22 0 25 8

21-23 T 4 D
24 (Z F) link
25 liB F

Gl Simultaneous first-order differential equations by modified
Runge-Kutta process; single step.

T 47TZ
5 IIH 682 D

T 61rZ
7 liP N

T 127TZ
13 II~ 1405 D

15

17

0
1
2
3
4

6

8
9

Aux-10
11
12

Aux~14

16

Aux~18

19
20
21

Aux~22

12-23
24
25
26
27

21-28
58-29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

PROGRAMS OF SELECTED SUBROUTINES 133

T 147TZ
T H
T 167TZ
T 2 H
T z
A 3 F
T 61 8
A 31 8
G 63 8
.1 F
T 6 z
p N
T 8 z
M M
0 .1
H 4 8
A 20 8

(E 23 8)
T 14 z
A H
T 16 z
A 2 H
T 18 z
H 1271'8
s 1271'&
T 12;r8
E 28 8
H 411'8
T 4 D
u F
s 38 8
A 25 fJ
T 38 e
s 611'8
A 1671'8
u 4611'8
A 8 8
u 37 8
A 9 e
u 55 e
A 24 e
T 39 e

(Z F)
(R 105771'9)
(Z F)
y F
u 6 D
v 6 D
R L
y F

J plant link

set count = A 8 8

= - 1/2 J = - 2/3

enter for first stage

]n172
enter for second stage

enter for third stage

enter for fourth stage
clear 4D or accumulator

J switch order 38*

plant variable orders

*
cycle dealing with
each variable in
turn

134

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

3 ---- 63
64
65

u
(Z
(Z
A
L
A
L
s
N
y

(Z
A
s
G
A
s

(Z
A
u
G

ii(Z

ELECTRONIC DIGITAL COMPUTER

D store r
F) add oldy
F) plant new y
D
D
D
L form new 2mq

6 D
4 D

;) I plant 2mq

461T6 ll 14 1T6 test ~or last

29 6 i _ vanable

65 6 '
11 6 I

F) I
35 (J I

65 6 I

;) I

link: tests for end of step

to auxiliary subroutine
count

*Order 38 is switched to U 1028 D (equivalent to U 4 D) for stages
1, 2, and 3 and back w R 10577r9 (equivalent toR D) for stage 4. During
stage 4, 4D remains empty.

The register contains - 1/ 2 during stage 1, - Vi72 during stage 2, + Jli72
during stage 3, and - 2/ 3 during stage 4. At each stage, the cycle of orders
29 to 58 is performed n times.

G3 Integr a tion of y" = f(x,y) by 5th order process.
--- -----

Yz ~ Y1 + llYV2 1-(y~ + 1/1262 y~)h2 (1)

y~ = f(x 2 ,Y2) (2)

First, (1) is used with y~ in place of Yz and o2 y~ in place of o2y'}.. The value

of y2 (= [y2] a • say) obtained is used in (2) to get (y2'Ja, from which a value of

ll 2y}' = [o 2y j'Ja ca n be obtained. [y ~Jaand [ll2yJ.Ja are then used in (1) to get a new

value of y 2 = [y 2]0 and so on. The proces s is continued until two consecutive

values of o2yl_ differ by 2-31 or less.

T z
0 A 3 F J plant link
1 T 44 (J

G K
0 A 12 H J increase x1 to xz 1 A J H
2 T J H

PROGRAMS OF SELECTED SUBROUTINES 135

31- 3 H 16 H J (yO • 1/12 ''Yil to OD
4 v 8 H
5 A 4 H
6 y F
7 T D
8 H D
9 v 14 H

10 y F
11 A 2 H
12 u J D provisional value of oy1t to 100
13 A H
14 T 18 H Y2 to 18H
15 A 15 (} J call in auxiliary subroutine
16 G N

Aux-17 A 20 H
18 s 4 H
19 s 6 H
20 u 4 D trial value of 62yJ'. to 4D
21 s 8 H
22 G 25 (}

23 T D
24 s D

22-25 R 4 F
26 y F test difference in consecutive
27 E 32 (}

values of o2y'[
28 T D
29 A 4 D
30 T 8 H J repeat cycle with new value of 62 "
31 E 3 (} Y1

27-32 A 4 D
33 u 8 H
34 A 6 H
35 u 6 H
36 I A 4 H
37 T 4 H set new values of operands
38 A J D
39 u 2 H
40 A H
41 T H
42 z F) link

J1 Calculation of Legendre polynomials.

Uses a recurrence relation giving 0.5 Pn in terms of 0.5 P 11_ 1 and
0.5 P.-,- 2 which are stored in 4H and 6H respectively. (4H and 6H are used
as working space.)

47F p 68 N M parameter
T z

9 - 0 T 20 F l 1 v D

136 ELECTRONIC DIGITAL COMPUTER

2 L 8 F
3 s 40 D

14--- 4 u D
5 (T F)

This section reads the numbers following
6 I 40 F as in the first section of subroutine F1
7 s 40 F
8 A 39 F
9 E ()

10 A 2 F
11 E 25 F
12 A 5 ()

13 T 5 ()

14 E 4 ()

E 13 z
T M

1 71798 69184 F
1 14532 46123 F

85899 39592 F
68719 47674 F
57266 23061 F
49085 34053 F
42949 67296 F
38177 48708 F
34359 73837 z

These orders place -1 , -2/ 3, -2/4, ... , -2/ 10 in M, M-2, etc. , and are then
overwritten.

T z
0 A 3 F

]plant link
1 T 35 ()

2 A 38 () J plant 0. 5 Po (2x) in 4D a nd 6H 3 u 4 D
4 T 6 H
5 A 6 D put 0.5 P l (2x) in 4H
6 T 4 H
7 A 39 ()

]form multiplier order
8 T 20 ()

9 A 40 () J set transfer order
37 - 10 T 24 ()

11 H 6 D
12 A 6 H
13 R D
14 N 4 H
15 y F form 0.5 P n(2x) from 0.5 Pn-l and 0.5 P n_2
16 T D by recurrence relation
17 v 4 H 0.5 P n = 4x(0.5 P n-l) - 0.5 P n- 2
18 L 1 F - 2/ n · [x · 0.5 Pn- 1- 0.25Pn- 2l
19 s 6 H
20 (H D)

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

34-36
37
38
39
40
41

K1

0
1
2
3

12-4
5
6
7
8
9

10
11
12
13
14
15
16

K4

0
1

PROGRAMS OF SELECTED SUBROUTINES

N
y

u
(T
A
T
A
T
A
s
T
A
s
G

(Z
A
E
I
H
T
p
E
T

D
F
D
D)

4 H
6 H

D
4 H

20 f)

41 f)

20 ()

24 ()

6 ()

36 f)

F)
4 f)

J f)

F
M

8 D
2 F

25 K
1rrM

J
transfer order

J set P n-1, Pn-2 in preparation
for the next cycle

J modify H order

J count and modify transfer order

link

J count and modify transfer order

= 1/2

Summation of power series.

T z
A 3 F

]plant link T 13 8
D clear OD

14 f)
]formAm D 16 8

7 8
D multiply partially formed polynomial by x
D) add in next coefficient
F round off
D transfer to OD

7 8 J start to form next value of order 7 15 8
4 f)

F link
H
N

2 N

Summation of power series.

G :I JrormA m+2 F
A 21
u 11

137

138 ELECTRONIC DIGITAL COMPUTER

2 A 3 F J formE m+4 F 3 u 19 (J

4 s 20 (J J formS m+3 F' 5 T 8 (J

6 H 4 D
7 T D clear OD
8 (S F)

Jo,mA n-2pD
18 - 9 A 21 (J

10 u 6 F
11 (A F)
12 T 14 (J

13 v D

}o'm polynomial
14 (A F)
15 y F
16 T D
17 A 6 F J test for completion 18 G 9 8
19 (E F) link
20

1 11~ 1 F
21 2 F

K8 Shift of origin of a polynomial (numbers expressed in floating
decima l form).
Us es library subroutine A 11, whose first order is in L1.

G K
0 A 3 F J plant link 1 T 29 8
2 s 33 8 J plant -(P 2s F); initially -(P 2n F) 28 - 3 T 4 F
4 A 30 8 J place 0.10-60 in OD 5 T D
6 E 9 8 jump

25 __. 7 s 4 F
add P 2 FJ modify counter 8 A 5 M

9 u 5 F
10 A 32 8 J form and plant A h+2t D
11 u 18 8
12 A 31 8 J form and plant T h+2t D 13 T 22 8
14 A 14 8 J ca ll in All 15 G £1
16 A D I
17 v 6 D Xn+l = X n · X+a r+ l

J
parameters inter-18 (A D)
preted by A 11 19 T D

20 E 21 8
All - -21 A D

] copy X r +l 22 (T D) I

PROGRAMS OF SELECTED SUBROUTINES 139

23 A 5 F J test for end of each synthetic division 24 A 4 F
25 G 7 9
26 A 4 F

add P 2 F J test for end of last division 27 A 5 M
28 G 3 9
29 (E F) link
30 F F o.w-co
31 0 F (T- A)
32 A h D J punched by user
33 p 2n F

L1 Logarithm to base 2, large range.

i2 [1og2 C(6D)] to OD

Fractional part of logarithm is formed digit by digit , us ing a shift-
ing (negative) strobe.

G K
0 A 3 F J plant link 1 T 33 9
2 E 11 9
3

11 ~ 1024

F = 1/ 2
4 F = 1/ 32
5 p 512 F = 1/64

14- 6 A 3 9
7 L D
8 T 6 D integral part of logarithm: shift to left,
9 A D counting in OD

10 s 4 9
2-11 T D stop when C(6D) 2: 1/ 2

12 s 3 9
13 A 6 D
14 G 6 9
15 T 8 F clear accumulator
16 s 5 9 J plant strobe 32-17 T 4 D
18 H 6 D J "luar' C(6D) and 19 v 6 D
20 s 3 9

te s t whether

21 E 34 9
2:1/ 2 or < 1/ 2

22 A 3 9
23 L D

}hlltldt]

Digit cycle for

24 y F
fractional part

25 T 6 D
of logarithm

26 A 4 D < 1/ 2
enier digit 27 A D

] in logarithm 28 T D

140

37-29
30
31
32
33

21-34
35
36
37

M1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

A
R
y

G
(E
A
y

T
E

ELECTRONIC DIGITAL COMPUTER

4

17

3

6
29

D
D
F
()

F)
()

F
D
()

J shift strobe

J test for
last digit

link

J 2 1/2

Assembly subroutine No. 1.
For details see Part I, Section 4-6.

G K
H 2 F P 1 F to multiplier register
T F store TF, IF or PF
A 42 F J c 42 F increase C(42) by 1 if odd
u 42 F
A 8 F add TF
u 22 F revised transfer order
A 15 () J form reference order*
A F
H 8 F restore multiplier register contents

(T 45 F) plant reference order
A 10 () J advance location of reference order A 2 F
T 10 ()

E 34 F return to initial orders
liN F
T 44 K

* C(Acc.) upon entry: T, I, or P. Corresponding reference order:
P, E , or G.

M2 Assembly subroutine No. 2.
For detail::? see Part I, Section 4-6.

G K
Enter on-0 T F address (0 or 1) to 0
readingS 1 H F

2 c 22 F J adju•t addre•• of tran•fe. o'd"'
3 A 22 F if necessary
4 u 22 F
5 s 8 F J set C(42) 6 u 42 F
7 A 40 F add function letter to form reference order
8 (T 16 9) plant reference order
9 A 2 F J advance location of reference order 10 A 8 ()

11 T 8 ()

12
13

Enter on-14
reading 7T15

27F
28F

44F

PROGRAMS OF SELECTED SUBROUTINES

H 8
E 34
A 43
E 8
T 27
E 14
E
T 44
p 16

F
F
F
F
K
()

()

K
()

restore C (R)
return to initial orders

J these orders perform the l'Ole of the
original orders in 27 and 28

these orders replace orders 27 and 28 so
that 7T switches to 149 and S to 9

P7 Print positive integer up to 10 digits.

141

Prints C(OD) · 234 with suppression of nonsignificant zeros but with-
out layout.

G K
0 A 3 F J plant link 1 T 26 ()

2 H 287T9 J multiply by :i" /10 10 and add z-3<
3 N D
4 y F
5 L D
6 T 4 D
7 s 27 () J -1/32 to 0 8 T F
9 H 8 () set multiplier

10 s 8 () set digit count
25-11 T 1 F digit count

12 v 4 D multiply
13 A F J test for first 14 G 31 ()

nonzero digit*
15 s F
16 L D shift
17 u F J print digit cycle
18 0 F
19 F F J check and remove 20 s F
21 L 4 F shift

34-22 T 4 D
23 A 1 F J count digits 24 A 27 ()

25 G 11 ()

26 link

p J **
T 27 z

27 P1024 F
28 p 610 D J = -t3 /1010
29 () 524 D
30 ¢ F

142 ELECTRONIC DIGITAL COMPUTER

14-31 0 30 I) space J 'uppre" zero
32 s F add 1/ 32
33 L 8 F shift
34 E 22 ()

* C(O) = - 1/32 until first nonzero digit is printed, when C(O) becomes
positive, thus preventing the suppression of later zeros.

**These s ymbols appear on the tape and serve merely to clear 28D,
thus ensuring that the sandwich digit between 28 and 29 is zero, before further
orders are read.

Pll Print signed decimals in preset layout.

T z
0 A 3 F J plant link 1 T M
2 A 20 () J test for end of line
3 G 11 ()

4 0 1 M carriage return
5 0 2 M line feed
6 s 2 F
7 E J I)

8 0 2 M
9 A 7 M line and column count

7-10 s 19 I)

3-11 A 7 M
12 T 20 ()

13 A D
14 E 21 I) test sign
15 T D c hange sign
16 s D
17 0 () print -
18 E 22 ()

19 II~ N
20 F !

14-21 0 5 M l space
18-22 p

~ I
r ound-off

23 T
24 A 6 M ! J •et multtplior, digtt oount
25 H 4 M i

4n-(O)
G K

26 T 4 F
4!._ (1) 27 v D multiply by 10/ 16

(2) 28 u F J print (3) 29 0 F
(4) 30 F F

-,

(5) 31 s F
J check a nd remove

(6) 32 G 9 () J te't for correct print
(7) 33 s 3 M
(B) 34 G J I)

(6)-(9) 35 0 2 ~ I (8)-(10) 36 A 3

PROGRAMS OF SELECTED SUBROUTINES 143

37 L 4 F shift
38 T D
39 A 4 F

J digitc~t 40 L D
41 E 9
42 0 5 M
43 L D
44 G 9
45 0 5 M J spacing 46 0 5 M
47 0 5 M

0 40 K J figure shift performed during input
7T F of orders
T 22 K
T M

M 0 link
1 9 F carriage return
2 .1 F line feed
3 Q F 1/16
4 J F 10/16
5 rjJ F space
6 p .1 digit layout constant
7 p 5 F block constant

P14 Print signed decimal with round-off and digit check.

0 40 K J figure shift during input
7T F
T z

0 A 45 9
1 u 4 9 form A n+2 F
2 A 22 9
3 T 39 9 form link
4 (A F) = A n+2 F or layout count
5 E 8 9
6 0 40 9 carriage return
7 0 41 (J line feed

5- 8 T 4 9 layout count in 49
9 A D

10 E 15 9 test sign of C(OD)
11 T D J reverse sign 12 s D
13 0 9 print-
14 E 16 9

10-15 0 42 9 print space
14-1& p H round-off order

17 T D
18 H 44 9
19 A 4 9

144 EJ.,ECTRONIC DIGITAL COMPUTER

35]- 20 T 4 () I
38 21 v D multiply by 10/ 16

22 u 1 F
23 0 1 F
24 F F
25 s F

print digit and check
26 G 29 ()

27 s 43 ()

28 G 30 ()

26-29 0 41 ()

28-30 A 43 ()

31 L 4 F
32 T D
33 A 4 ()

J layout oount

34 L D
35 E 20 ()

36 0 42 ()

37 L D
38 G 20 ()

39 (E F) link
40 () F carriage return
41 .1 F line feed
42 ¢ F space
43 Q F
44 J F
45 p 2 F

Q1 Quadrature, using Simpson's rule.

Forms and places in pD the s um:

r Jb h lfo + 4f1 + 2f2 + 4f 3 + ... + 4fn-l + qz3
9
f(x)dx

where fo = f(a), ... f r = f(a+rh), ... fn = f(b)

T z
0 A 41 () J pla nt A m+2 F 1 u 8 ()

2 A 2 F J plant A m+3 F 3 u 11 ()

4 A 3 F J plant link 5 u 40 ()

6 s 42 () J plant S m+4 F 7 T 36 ()

8 (P F) becomes A m+2 F ; la ter x r = a + rh
9 u 8 () J set x 0 = a 10 T F

11 (P F) becomes A m+3 F; later h
12 T 11 () plant h
13 T H clear pD

14
39-15

16
17

37--18
19
20

Aux-21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

PROGRAMS OF SELECTED SUBROUTINES

T 43
T 4
A 21
T 23
T 4
A 19
p
H 11
v
(P
y

A
T
A 45
s 43
u 43
A 44
T 23
A 8
A 11
u 8
u

(P
G 18
s 11
G 15

(P
p 2
M 1

(P
L
p

(}

F
(}

(}

F
(}

N
(}

D
F)
F
H
H
(}

(}

(}

(}

(}

(}

(}

(}

F
F)
(}

e
(}

F)
F
F
F)
D
D

clear 43

clear accumulator J for first and

set "shift" order* last ordinates

clear accumulator

J call in auxiliary sub­
routine to compute f(xr)

J multiply ordinate by h

" shift" order*

J add to partial sum

l set "shift" o'd"' •

J add h to a + r h

becomes S m+4 F
jump when r.S.n-1

jump when r = n
link

PF-PD

145

* Order 23 is L 1 F for odd numbered ordinates, and L D for even
ordinates, except the first and last, for which it is H 11 9 (no effect).

Q3 Quadrature using Gauss' six-point formula

Computes lr~)dx by the approximation
a-h
3

2h i~l di[f(a+bi h) + f(a-b; h)],

where d i and bi are constants. This is equivalent to fitting a curve of the
eleventh degree.

a= C(mD), h = C[(m+2)D]

T z
0 A 3 F J plant link 1 T 30 8
2 T 4 H clear 4H

146

3
24-4

5
6

22- 7
8
9

10
11
12
13
14

Aux-15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

367T6
387r6
407T6
427T6
447T6
467T6

ELECTRONIC DIGITAL COMPUTER

s 31 6
A 32 6
u 16 6
A 33 6
T J 6
A H
H 2 H

(V F)
y F
T D
A 13 6
G N
H D

(V F)
y F
A 4 H
T 4 H
A J 6
A 34 6
G 7 6
s 35 6
G 4 6
H 4 H
v 2 H
L D
y F
T D

(E F)
p 6 F
v 427T6
M 6 F
0 F
I 467T6
E 69 K
T 367T6

14716 66

J plant orders

gives x

J calculate f(x)

d i ·f(x)

link order

30989 18,
184 F d1
315 F dz
093 F d3
270 F b1
762 F bz
400 7T b 3

40193 50
1 60197 04
1 13594 90

40994 46
T 48 z I

R1 Input of a sequence of signed, long, decimal fractions.

G K
T 45 K

45F P 32 6
46F P 47 6

T Z

H parameter
N parameter

0
1
2
3
4

35- 5
6
7
8
9

10
11

24-12
13
14
15
16
17
18
19
20
21

46-22
23
24
25
26
27
28
29
30
31

H 32
1 33
2 34
3 35

16-4 36

PROGRAMS OF SELECTED SUBROUTINES

A
u
A
T

(A
T
T
T
A
T
H
s
T

(I
A
s
E
T
v
L
A
T
A
A
G
H
N

! ~ I
4 N
9 H

F)
H
D

4 D
5 N

13 e
2 N
6 N
4 e

F)
F

6 N
4 H
6 F
4 D
8 F

D
4 D
4 e
7 N

12 e
4 D

N
R 128 F
R 128 F
V 1 N
L
y

(T
A
A
E

D
F
F)
H

3 N
5 e

J plant A m+2 F

J plant link

(i) A m+2 F (ii) digit count
plant transfer order

J clear OD and 40

J reset switch

set multiplier
set digit count**
digit count
or T F when switched*

J test symbol for
+ , -,or F

I

clear accumulator
multiply previous digits
shift
add new digit

J count digits

multiply by 234 / 1010

transfer to store

change transfer order

digit cycle

5 37 I
6 38

s
E
A

6 N
42 9

7 N
44 e

6

test for - l · -andF 7 39
8 40
9 41

37-42
43

39 -- - -- 44
45
46

N 47
1 48
2 49

E test for +
T F F: clear accumulator

(E F) link
f--"""=----=--=---'""" S 4 D I negative:

T 4 0 _j change sign

~ 1; r II J set switch to TF

E 22 u

~~~-=~-1.,.;:;;:..;:~:.......,:,-~--ll 

} and-

= 10/ 32 

147 



148 ELECTRONIC DIGITAL COMPUTER 

3 50 p 2 F 
4 51 u 1 F 
5 52 I F 
6 53 p 5 D 
7 54 p D 

*Order 13 is IF during input of punched digits, T F for dummy 
zeros which make up remainder of 10 digits. 

**Digit count is actually set to 11 because + or - sign is counted 
as a digit. 

R2 Positive integer input during input of orders. 

G K 
9- 0 T 20 F 

1 v D J 10 · (partial sum)* 
2 L 8 F 
3 A 40 D add new digit 

14- 4 u D J New partial sum to OD** and to 
5 (T F) final destination of number digit cycle 
6 I 40 F J read next symbol 
7 A 40 F 
8 s 39 F subtract 11.2- 1 6 

9 G 8 test for F 
10 s 2 F subtract 2.2-16 number cycle 
11 G 23 F test for rr (if rr return 

to initial orders) 
12 A 5 8 J change destination of integer 

Enter~13 T 5 (j 

14 E 4 (j 

Followed on tape by: 

E 13 z on subroutine tape 
T m D punched by user 

Hence control enters subroutine at order No. 13, with T m D in the accumulator . 

*The multiplier register contains 10/32 throughout input of orders 
and operation of this subroutine. 

**When obeyed for the first time in each number cycle, this order 
clears OD. 

R7 Input of a sequence of signed long decimal fractions during 
program. 

0 
1 
2 
3 

For details of punching see specification in Part II. 

G K 
A 6 (J 

u 4 8 
J forms A n+2 F 

A 7 8 
T 31 8 plants link 



4 
5 
6 
7 

33-12 
36-13 

14 
15 
16 
17 

5-18 
19 

29-20 
21 

19-22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
31 
33 
34 
35 
36 

PROGRAMS OF SELECTED SUBROUTINES 

(A F) 
E 18 0 

II~ 2 F 
1 F 

T 81rZ 
c 819 F 
T 8 z 
L 1229 F 
T J 7TZ 
D 409 D 
T J z 
s 1638 D 
T 12 z 
v J 7T0 
L D 
y F 

(T D) 
A 15 0 
s 6 0 
T 15 0 
E 22 0 
N 87T0 
y F 
T D 
H D 
I F 
A F 
R 16 F 
T D 
A F 
E 20 0 
A 21 0 

(E F) 
s 25 0 
E 12 0 
T F 
N J 7T0 
E 13 0 

J places -1/10 In 8•6 

J places -8/10 m 10•6 

multiply by -8/10 

transfer to store 

J decrease transfer order by 2 

multiply by 1/10 

read digit 

J shift to most significant 
position 

test for + or -

test for x: also link 

test for+ 

multiply by 8/10 

digit cycle 

82 Square root, fast Vc(4l5) to 4D. 

Repetitive [ 
a n+l =an - 0.5 ancn a 0 = C(4D) an-YC(4D) 

process 
Cn+l = c~(0.25cn -0.75) c0 = C(4D) -1 Cn - 0 

G K 
0 A 3 F J plant link 1 T 20 8 
2 A 4 D J form c0 3 s 9 0 
4 A 6 0 

149 



150 ELECTRONIC DIGITAL COMPUTER 

19- 5 u D J Cn toR 6 H D 
7 R 1 F J (0.25cn -0.75) to OD 8 s 21 () 

9 T D 
10 N 4 D 

}•' to4D 

11 R D 
12 A 4 D repetitive cycle 
13 y F 
14 T 4 D 
15 v D 

}omc"., 
16 T D 
17 D 
18 F 
19 5 () test for Cn + 1 = 0 
20 link 
21 = 3/4 

83 Cube root of C(6D) to OD. 

Root is formed digit by digit, using a shifting (negative) strobe. 

0 
1 
2 
3 

19 - 4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

23-14 
15 
16 
17 
18 
19 
20 

11-21 
22 
23 
24 I 

G 
A 
T 
T 
s 
T 
H 
v 
y 

T 
v 
s 
E 
T 
s 
A 
T 
A 
R 
y 

G 
(E 
T 
A 
G 

II I 

3 
20 

24 
4 

8 
8 
6 

21 
8 
4 

4 

4 

8 
4 

14 

K 
F 
() 

D 
() 

D 
D 
D 
F 
D 
D 
D 
() 

D 
D 
D 
D 
D 
D 
F 
() 

F) 
D 
D 
() 

F ! 

J plant link 

set first trial (i.e., zero) 

J set strobe 

I 

J form (trlai)3 - C(6D) 

l J increase trial 

l J shiit s trobe 

link J decrease trial 

= 1/ 2 



PROGRAMS OF SELECTED SUBROUTINES 151 

T3 General cosine (used with R9). 

0.5 cos (2m C(4D)] to 40. The argument is formed modulo 27T by 
multiplication by 2/7T, and a suitable left shift to cast off the integral part. 
This yields 0/7T where 0 = 2m C(4D) modulo 27T, and 161 ~7T. A power series 
is then used to form 0.5 sin 2x, where x = 0.5 (IBI- 7T /2). 

46F p 42 7TO I N parameter 
E 69 ~ I 
T 

N 0 11,453,246,123 F 
2 2,290,649,225 F 
4 218,157,069 F 
6 12,119,837 F 
8 440 ,721 F 

10 11,144 F 
12 13,493,037,705 F 
14 10,937,044,409 7T 

T z 
0 A 3 F 
1 T 41 () plant link 
2 H 4 D 
3 v 14 N multiply by 2/ 7T, 

4 (L H) multiply by 2"' - ~ 

5 E 8 () J take modulus 6 T D 
7 s D 

5- 8 s 58 () - 1/ 2 
9 T D 

10 H D 
11 N 12 N multiply by 7T / 4 
12 L D 
13 T 4 D 
14 H 4 D 

}toDD 15 v 4 D 
16 y F 
17 T D 
18 H D }u 19 N J N 

- a13 x2 
20 A 8 N 
21 T D 
22 N D 

]a9 - a n x2 + 23 A 6 N 
24 T D 
25 N D J a7 - a gx2 + 26 A 4 N 
27 T D 
28 N D 

]a5 - a 7x2 + 29 A 2 N 
30 T D 



152 ELECTRONIC DIGITAL COMPUTER 

31 N D 
]a3- aEx2 + 32 A N 

33 T D 
34 N D J 2 4 
35 T D 

-a3x + a5x -

36 H D 
37 v 4 D J 3 5 -a3x + a 5x 
38 y F 
39 A 4 D x- a 3x3 + a5~ 
40 T 4 D 
41 (E F) 

T 5 z 
58 II I F = 1/2 

T4 Inverse cosine. 

0.5 arc cos 2 C(4D) to OD where o.s;.c(4D).s;.1/2. Proceeds by finding 
successively the sign of 0.5 cos 2nC(4D) formed from 0.5 cos 2n-1c(4D) by 
xn = 4x ~-l- 1/2. The required result is built up digit by digit, using a nega­
tive strobe. 

G K 
0 A 3 F 
1 T 28 e plant link 
2 T D 
3 A 32 e 

20- 4 T 6 D strobe in 6D 
5 H 4 D 
6 v 4 D 
7 1 l ' L F form Xn = 4xn-l - 1/2 
8 s 29 e 
9 y F 

10 E 16 e test sign of Xn 
11 T 4 D 
12 s D J form partial sum 13 A 6 D 
14 T D 
15 s 4 D 

10-16 T 4 D 
17 A 6 D J shift strobe 18 R D 
19 y F J test for end of cycle 
20 G 4 e 
21 H D 
22 N 307T6 multiply by 1T /4 
23 y F 
24 E 27 e J take modulus 25 T 4 D 
26 s 4 D 

24---27 T D 
28 



PROGRAMS OF SELECTED SUBROUTINES 

29 Ill F 
T 30rrZ 

31 liD 888 F 
T 30 z 

30 110 699 D 
T 32 z 

32 IIK4096 F 

T5 0.5 cos x and 

0 
1 

2rr0 

4rr0 

Reset- 6 
7 
8 

o-9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

8--19 

T 
E 

III 
T 

II( I 
T 

;II(P 
T 
A 
T 
E 
H 
N 
H 
v 
y 
T 
v 
H 
v 
y 
T 

z 
9 (j 

F 
2rrZ 

F) 
4rrZ 

F) 
6 z 
1 (j 

2rr0 
19 (j 

4rr0 
2 H 
2rr9 

H 
F 

2rr9 
2 H 
4rr9 

H 
F 

4rr9 

I 

= 1/2 

}laoe' - rr/ 4 In 30rr6 

= -1 

0.5 sin x at equal intervals of x. 

= 1/2 

0.5 COS X 

0.5 sin x 

J reset to x = 0 

l new value of 

l J new value of 

0.5 COS X 

0.5 sin x 

T7 Sine, rapid (used with R9). 

1/2 sin [2 C(4D)] to 4D 

G 
K l E 69 K calls in R9 

T 26rr0 

Version 1. 

26rr0 11 453 246 086 F 

}oeffident' of pnwe' ,.,.,., 
28rr0 2 290 648 539 F 
30rr9 218 152 390 F 
32rr6 12 105 378 F 
34rr9 419 996 1T 

T z 
0 A 3 F 
1 T 25 0 link 
2 H 4 D 
3 v 4 D J form [C(4D)] 2 
4 y F 
5 T D 

153 



154 ELECTRONIC DIGITAL COMPUTER 

6 H D 
7 N 34rr8 
8 A 32rr8 
9 T D 

10 N D 
11 A 30rr8 
12 T D 
13 N D 
14 A 28rr8 
15 T D su mmation of power ser ies 
16 N D 
17 A 2671"8' 
18 T D 
19 N D 
20 T D 
21 H D 
22 v 4 D 
23 A 4 D 
24 T 4 D 
25 (E F ) l ink 

T 36 z : 

U3 Counting s ubroutine No. 3 (open). 

G K 
0 A 16 6 I 

1 s 18 6 : test and jump if q = qr 
2 E 6 6 _j 

3 T F 
4 A 16 6 
5 E 12 6 

2 - - 6 A 1 () 

7 A 15 6 
8 T 1 6 modify C (1) a nd C(14) 
9 A 14 () 

10 A 15 6 
11 T 14 6 

5 --· 12 A 2 F i 
I 

13 T 16 8 : replace q- 1 by q 
14 E 17 ~ ~ 15 

II (~ 
2 

16 F ) I q 

U4 Counting subroutine No. 4 (closed). 

G K 
0 A 2 F 
1 A 2 F 
2 u 22 6 A m+2 F to 22 () 
3 A 2 F 



PROGRAMS OF SELECTED SUBROUTINES 155 

4 u 12 8 A m+3 F to 12 8 
5 A 2 F 
6 u 14 8 A m+4 F to 14 () 
7 A 28 6 
8 u 19 6 G m+5 F to 19 0 
9 s 28 6 

10 A 3 F 
11 T 27 6 E m+6 F to 27 () 
12 (P F) becomes A m+3 F 
13 T 20 6 *As F to 20 () 
14 (P F) becomes A m+4 F 
15 T 14 6 
16 s 14 6 

26-17 T 14 6 
18 A 18 () 

19 (P F) becomes G m+5 F 
20 (P F) becomes A S+xr F 
21 A 20 () 

22 (P F) becomes A m+2 F 
23 T 20 () 

24 A 14 () 

25 2 F 
26 17 () 

27 becomes E m+6 F (link) 
28 

* may be replaced by any other function letter. 

V1 Multiplication of vector by contracted symmetric matrix. 

49F y F L parameter 
50F p 24 () X parameter 

T z 
0 A 3 F 

]plant link 1 T 20 X 
2 T 7 F clear 7 

46- 3 u 6 F Jet C(6), C(7) and 
4 A 7 F initial values of 
5 u 7 F C(4) , C(5) for next 
6 T 4 D scalar product 
7 A 6 F J set transfer order 8 A 4 X 
9 T 17 X 

10 T D clear OD 
39-11 A 2rrX 

12 A 4 D 
13 T 14rr0 
14 (H F) 

Jro'm single p'oduc] 15 (V F) 
16 p L round-off or shift 



156 

17 
18 
19 
20 
21 
22 
23 

X 24 
1 25 
2 26 
3 27 
4 28 
5 29 

21- 6 30 
23- 7 31 

8 32 
9 33 

10 34 
11 35 
12 36 
13 37 
14 38 
15 39 

36-16 40 
17 41 
18 42 
19 43 
20 44 

45 
46 

ELECTRONIC DIGITAL COMPUTER 

A 
T 
A 4 
s 6 
G 6 
A 6 
E 7 
V2046 
p 
p 
p 
p 
p 2 
T 14 
A 5 
A 4 
T 4 
A 4 
s 
E 16 
A 1 
T 4 
E 11 
A 

(T 
A 6 
s 

(E 
A 1 
E 3 

D 
D 
F 
F 
X 
F 
X 
H 
H 
N 
M 
L1 
F 
(] 

X 
D 
D 
F 
X 
X 
X 
F 
(] 

D 
F) 
F 
X 
F) 
X 
(] 

J add to partial sum 

[to 6X if diagonal 
L not yet reached J on or after diagonal 

= P 2(n-1) F 
= P 2n F 
=HcD 
=V mD 
=TsD 

clear accumulator J advance C(5) 

l advance C(4) and 
test for end of 
scalar product 

J plant scalar product 

link and test for 

single 
product 
cycle 

l advance C(6) 

end of process 

scalar 
product 
cycle 

Note: When forming the pth scalar product, C(6) = P 2(p-1) F and C(7) = 

P p(p-1) F. When forming the qth term of the pth element, C(4) = P 2(q-1) F 
and C(5) is the address of the matrix element relative to m. If 

~p, C(5) = P[p(p-1) + 2(q-1)] F, 
q> p, C(5) = P[q(q-1) + 2(p-1)] F. 

V2 Addition and subtraction of n dimensional vectors. 

T z 
0 A 23 (] 

1 u 11 (] 

2 A 2 F 
3 u 13 (] 

4 A 2 F 
5 u 15 (] 

6 A 10 (] 

7 T 22 (] plant link 
8 s 24 (] 



PROGRAMS OF SELECTED SUBROUTINES 157 

21- 9 A 23 (J 

10 u 1 F 
11 (P F) A m+2 F 
12 u 17 (J 

plant arithmetic orders 
13 (P F) A m+3 F 
14 u 18 (J 

15 (P F) A m+4 F 
16 T 19 (J 

17 (P F) J arithmetic operation 18 (P F) 
19 (P F) 
20 A 1 F 
21 G 9 (J test for end of operation 
22 (P F link 
23 

II~ 
2 F 

24 H 



158 ELECTRONIC DIGITAL COMPUTER 

APPENDIX A Keyboard perforator code, etc. 

Perforator Teleprinter Code as punched Binary Decimal 
character character on tape equivalent equivalent 

p 0 p 0 00000 0 
Q 1 Q 1 • 00001 1 
w 2 w 2 • 00010 2 
E 3 E 3 • • 00011 3 
R 4 R 4 • 00100 4 
T 5 T 5 • • 00101 5 
y 6 y 6 • • 00110 6 
u 7 u 7 • • • 00111 7 
I 8 I 8 • 01000 8 
0 9 0 9 • • 01001 9 
J Bell J • • 01010 10 
1T Figures • • • 01011 11 
s s .. • • 01100 12 
z § z + • • • 01101 13 
K ( K ( • • • 01110 14 
Erase Letters • • • • 01111 15 

Blank tape (no effect) 10000 -16 16 
F F $ • 10001 -15 17 
0 Carriage return • 10010 -14 18 
D D • • 10011 -13 19 
1/> Space • 10100 -12 20 
H + H £ • • 10101 -11 21 
N N • • 10110 -10 22 
M M • • • 10111 -9 23 
Ll Line feed • 11000 -8 24 
L % L ) • • 11001 -7 25 
X X I • • 11010 -6 26 
G G # • • • 11011 -5 27 
A A • • 11100 -4 28 
B ? B ? • ! • 11101 -3 29 
c ( c • • • 11110 -2 30 
v ) v • • • • 11111 -1 31 

Notes: 1. Positive and negative decimal equivalents are given for the last 
sixteen codes above. The negative equivalent applies when the symbol occurs 
as the five most significant digits of an order. The extreme left-hand digit 
is then a "1" and, for numerical purposes, acts as a sign digit, thus indicat-
ing a negative number. 

2. It will be seen that the secondary characters on keyboard perfora-
tor and teleprinter do not agree in every case. It is intended that they should 
all eventually be brought into line. 



APPENDIX B 

Location 

0 
1 

2 
3 

12- 4 
5 
6 

2:1- 7 
38 8 

9 
10 
11 
12 

13 
14 
15 
16 

15-17 
18 

19 

20 

21 

22 

23 
24 

31-25 

26 

20-27 
28 

159 

The initial orders 

Order ---
(T F) 
(E 20 F) 

II~ 
1 F 
2 F 

A 39 F 
R 4 F 
v F 
L 8 F 
T F 
I 1 F 
A 1 F 
s 39 F 
G 4 F 

L D 
s 39 F 
E 17 F 
s 7 F 
A 35 F 
T 20 F 

A F 

(H 8 F) 

A 40 F 

(T 43 F) 

A 22 F 
A 2 F 
T 22 F 

E 34 F 

A 43 F 
E 8 F 

Notes 

J These orders cause control to be transferred 
to 20. They are not used after the start, but 
their locations are used as working space. 

J These are constants which are intended to be 
left here unaltered in any program. 

Input of address. This group of orders is en­
tered at 8 with the accumulator empty, so 
that 0 is cleared. The next digit on the tape 
is taken in and tested to see if it is less than 
eleven; if so it is doubled and added to ten 
times the content of 0, the sum being sent 
back to 0. The next digit is read, tested, etc., 
and this is continued until the whole address 
has been formed; the next digit read, x, is 
greater than ten and so corresponds to a 
code letter. 

J 
These test to see if x is greater than sixteen. 
If it is, the order A(24+x)F is formed and 
planted in 20. If x is sixteen or less a switch 
order E(16+x)F is formed and planted in 20. 

This adds the address, which is always positive, 
into the accumulator. 

This order places 10/32 in the multiplier regis­
ter during the start and is later replaced by a 
manufactured one which either adds to the 
accumulator the number determined by x, or 
switches control to an address determined by x. 

This adds in the function digits of the order so 
the accumulator now contains the order from 
the tape plus the number selected by x. 

This (the transfer order) transfers the assembled 
order to its final place in the store. 

l These orders increase the address specified in 
the transfer order by unity. 

_j 

Transfers control to 34. 

J Control is switched to these orders by 20 when 
1r has been read from the tape. They add :r16 

to the address (which is in the accumulator) 



160 

20-29 

20-30 

31 
20-32 

33 

26-34 
35 
36 
37 
38 

39 

40 

ELECTRONIC DIGITAL COMPUTER 

A 42 F 

A 40 F 

E 25 F 
A 22 F 
T 42 F 

I 40 D 
A 40 D 
R 16 F 
T 40 D 
E 8 F 

5 D 

D) 

and transfer control to 8. The address now 
refers to a long storage location. 

This adds the address in 42 to the accumulator. 

This adds the function digits of the order to the 
accumulator. The result is that the number in 
the accumulator is positive if the order has 
function digits represented by T or E, while 
it is negative in the case of G. 

J If the accumulator is positive, the order in the 
accumulator replaces the order in 22; if nega­
tive the accumulator contains the address spe­
cified in order 22 which is then put in 42 (the 
storage location corresponding to 0). 

J 
These take in the function digits, shift them to 

their correct place and transfer them to 40. 
The order in 35 is also used as a constant. 

A constant used in the input of the address. It 
equals 11.2 -ls 

A constant used during the start. It equals 2-lG. 

When the starting button is pressed, the initial orders are placed in storage 
locations 0 - 40 and control transferred to 0. The first orders to be executed 
are the following: 

0 

1 
20 

21 

22 

23 
24 
25 

T F 

E 20 F 
H 8 F 

A 40 F 

T 43 F 

A 22 F 
A 2 F 
T 22 F 

clears accumulator 

transfers control to 20 
places 10/32 in multiplier register 

adds 2- 16 to accumulator 

transfers 2-16 to 43 (the storage location 
corresponding to D). 

J increase order 22 to T 44 F 

The initial input is now ready to take in orders; the first part of the input tape 
is blank so that the first code letter is a space which corresponds to 16; con­
trol is therefore switched from 20 to 32, and the contents of 22 are transferred 
to 42. This action will continue, the spaces being treated alternately as func­
tion digits and code letters. The first symbols encountered will be P and F. 
There are two possibilities, either 

(1) the last space has been treated as a function digit in which case the 
psuedo-order "space F" = 1000000000000 ... is transferred to 44, or 

(2) the last space was treated as a code letter, in which case PF is 
transferred to 44. 

In both cases the following orders will be put in sequence starting at 45, un­
less a control combination comes first. 



161 

APPENDIX C Control combinations 

The operation and use of the more important control combinations are 
described in Part I, Chapter 2. Details will now be given of some less com­
mon control combinations which are sometimes used and which may be en­
countered in certain library subroutines. 

It may be noted that the operation of code letter z is always equivalent 
to that of K and (J combined. 

Throughout this appendix storage location 42 is assumed to contain 
P n F, placed there by the preceding G K. 

1. (a) E Z P F 

(b) Em Z P k' 

2. (a) 
(b) 
(c) 

E Z J followed by 
E m Z any positive* 
Em K order 

3. T m Z 

4. (a) T m 7T K 
(b) T m 7T Z 

Transfers control to the first order of the last 
subroutine to be read, leaving the accumulator 
clear, i.e., control is transferred to n. 

Transfers contl·ol to the mth order of the last 
subroutine to be read, leaving the accumulator 
clear, i.e., control is transferred to (m+n). 

These control combinations transfer control to 
(a) the first order of the last subroutine, (b) 
the mth order of the last subroutine, (c) the 
order in storage location m. The accumulator 
in all three cases is not left clear but contains 
the positive order which follows the control 
combination. 

Replaces the transfer order by J.- (m+n) F, i.e., 
causes the orders following on the tape to be 
placed in storage locations (m+n), (m+n+1), etc. 

Replaces the transfer order by (a) T m D, (b) 
T (m+n) D, i.e., the next order, or pseudo­
order, to be read from the tape is placed in 
the most significant half (the odd-numbered 
half) of the long storage location m, or (m+n), 
the least significant half, including the sand­
wich digit (see Part 1, Section 4-2) being cleared. 
If the control combination is followed by P F, 
the whole long storage location is cleared. 

5. E 25 K followed Transfers control to order 25 of the initial orders, 

6. T 22 K 

by any which causes the transfer order to be replaced 
positive* order by the positive order following the E 25 K. 

Causes the transfer order to be replaced by the 
next order on the tape regardless of whether 
this is positive or negative. The address spe­
fied in this order is immediately increased by 
unity. For example, T 22 K, T m F will cause 
the orders following to be placed in storage lo­
cations (m+1), (m+2), etc. 



162 ELECTRONIC DIGITAL COMPUTER 

7. (a) 
(b) 

am Kl 
am~ 

where a 
is a func­
tion letter 
and a m FL.O 

(c) 0 40 K a F 

8. GmK 

9. GZ 

Causes the transfer order to be replaced by 
(a) a m F, (b) a (m+n) F. If the accumulator 
is not cleared by this order further operation 
of the initial orders will not be possible unless 
the transfer order is restored by a suitable 
control combination. 

This is a particular case of 7(a) and causes the 
character a to be printed during input without 
occupying any storage space. T m K must 
follow on the tape where the following order 
is to be placed in m. 

Places a reference address in 42 equal to m 
plus the current addres s specified in the trans­
fer order. 

Adds the current address specified in the trans­
fer order to C(42). 

The above list explains the means whereby most simple operations can 
be carried out during the input of orders. More elaborate operations may be 
carried out by temporarily interrupting the action of the initial orders and 
transferring control to a suitable sequence of orders which have been placed 
in the store. The last of these orders should return control to order 25 of 
the initial orders. Care must be taken to ensure that none of the initial orders 
is disturbed and that the content of the multiplier register is restored if neces-
sary. 

*By "any positive order" is meant any order or pseudo-order whose 
numerical representation in the machine is positive. In general this means 
that the function letter on the tape must be positive , but there may be excep­
tions. For example, if the H parameter is P (n+l) F, then a pseudo-order 
punched as V 2047 H will appear in the machine asP n F. 

APPENDIX D Interpretive subroutines: example of packing of orders 

Consider the evaluation of the sum of the squares of the residuals of a 
set of nonlinear algebraic equations, that is, the evaluation of 

!T! 2 
I: fi (x i ·····xm) ' 

i=Q 

where fi (X i .. .. . xm) = 0 is a typical equation, f i being a function of its arguments 
which can be evaluated by a finite number of additions, subtractions and multi­
plications only. 

If there is no uniformity in the algebraic f0rms of the function fi, direct 
programming of their evaluation takes a. large number of orders. However, if 
the number of variables is not too large, a considerable saving can bP. effected 
in the space occupied by orders by using a special "order" code, of which 
each "order" specifies a sequence of machine orders, and by packi:'lg two 
such "orders" into a single storage location. This also simplifies the task 



163 

of the programmer, for, since each special "order" specifies a sequence of 
operations, these do not have to be programmed individually. An interpretive 
subroutine is required to interpret "orders" expressed and packed in this 
form. 

A possible code of special "orders" is given in the table. Six "orders" 
suffice to carry out the operations required in the process of calculating the 
residuals and summing their squares. One further "order" is required to 
return control to the main program. Thus the "orders" can be specified by 
three binary digits. 

Moreover, for the operation of the code, three storage locations are 
used. These storage locations, numbered from an arbitrary zero, are indi­
cated by [0], [1], [2]. [0] is used as a multiplier register, [1] to accumulate 
the sum of the squares of the residuals, and [2] as a working position used in 
the evaluation of each function value f i in turn. The interpretation of these 
numbers in terms of long or short storage locations in the machine is carried 
out by the interpretive subroutine. 

Thus, if provision is to be made for reference to not more ~han 29 other 
locations [n] for variables, constar.ts, and intermediate quantities that must 
be stored in the course of the calculation, five digits will be required to spe­
cify the "address" of the number to be operated on. This brings the total 
number of digits necessary to specify an order to 3 + 5 = 8. 

This leads to the possibility of packing two " orders" into one short 
storage location. Thus, the two "orders" 

p 8 
t 17 

i.e. , 0 0 010 1 0 0 0 
10110001 

would appear in one short storage location as 

~ormal position of binary point 

~ o ~ ol o 1 o ~ o 1 ~ 1 1 ~ 7o o 1 

Unpacking is performed by suitable collating and shifting orders, and 
packing by a small subroutine which can subsequently be written over, since 
it is only required during input. In the above example the packing s ;broutine 
used takes 38 orders, and the unpacking part of the interpretive subroutine 
19 orders only. 

As an example of programming using these special "orders" suppose 
the evaluation of 

(x+y-2f + (xy-1)2 

is required. If x is stored in location 4 (related to an arbitrary zero) , y in 
location 5, 2 (suitably scaled down) in location 6, and 1 in location 7, the 
"coding" would appear as 

w4 
w5 
e 6 

(cont'd.) 
wO 
e 7 

r r 
p 4 y 
q 5 

This program will thus occupy only 5 short storage locations. 



164 ELECTRONIC DIGITAL COMPUTER 

The disadvantage of using such subroutines is the time involved. Here, 
the factor over direct coding is about 7, depending on the proportion of the 
different "orders" used. However, against this it might be pointed out that 
with a particular set of eight equations the over-all space saving was 70 short 
storage locations in 200. 

A further possibility which arises is the packing of the interpretive sec­
tion of the subroutine itself so that the same unpacking procedure applies to 
the routine being interpreted and to the routine doing the interpretation. If 
this is done, however, the time factor increases considerably (by about 40:1 
in one program investigated) and it would appear, at least until faster high­
speed stores become available, that such a procedure is of restricted utility. 

"Order" code 

Binary Code 
equivalent letter Verbal description 
---------,-------,----------------.-----

0 p C [n]~ [OJ This is the first "order" in the 
formation of a sequence of con­
tinued products and puts C(n) in 
the storage location used as a 
multiplier register. 

1 

2 
3 

4 

5 

6 

7 

APPENDIX E 

q 

w 
e 

r 

t 

y 

u 

c[n] c[o]~[o] 

C [n]+ C [2]~[2] 
-c [n]+ c [2]~[2) 

c [2] 2 + c [1)~[1) 

0~[2] 

C[O)~n 

Switch "order" 

Blank 

This executes multiplication and 
stores the product ready as multi­
plier for the next multiplication. 

J Accumulation c~ sums and differ­
ences. 

Accumulation of squares of resid­
uals. The interpretive subroutine 
must put C[1l = 0 at beginning of 
operation. 

Transfer. Many intermediate 
products may be repeated and 
should be stored for re-use. 

[
Return to machine order beyond 
this "order," i.e., return control 
from interpretive subroutine. 

Methods of counting in a simple cycle 

In programming, one of the most common problems is the coding of a 
simple cycle of orders in such a way that it is performed a certain number 
of times, n say, before the machine proceeds to the next part of the problem. 
In the absence of any special considerations, this is best done as follows. 
Assume that P n F, or n-2- 15 , is stored in a , that the cycle begins· at the 
order stored inc, and that b is used for the counting operation. 



(c-1) 
c 
C+1 

Sa Fl 
TbF 

AbF 
A2F 
GcF 

165 

J required orders 

accumulator clear 

As the cycle is entered for the first time, -n . 2- 15 is sent to b; thereafter it 
is increased by 2-15 each time the cycle is performed. On encountering the 
order G c F, C(Acc.) is negative each time until the end of the nth repetition, 
when it is zero. 

Two advantages of this method should be noted. First, it is self-resetting, 
that is, it may be used several times in succession, without anything having to 
be restored. Second, when control finally leaves the cycle to obey the order 
following G c F, the accumulator is empty (as it is usually required to be). 
This method will not necessarily be the best if, for example, the accumulator 
is not required to be empty afterwards or if resetting is not required. There 
are many other possibilities. The counting may be done in steps of any size, 
positively or negatively, and the orders may be rearranged to suit special cases. 
When using a novel method, care must be taken to see that exactly the right 
number of repetitions will be obtained. 

One common variation occurs when one or more orders within the cycle 
have to be changed each time the cycle is performed. To take a simple exam­
ple, suppose that the long number in each location from 100 D to 298 D inclu­
sive is to be increased by x. The orders to be changed have to be increased 
by P 2 F each time, so it is convenient to count in steps of P 2 F. Assume as 
before that P 200 F is stored in a, that the cycle begins at c,. and that b is used 
for counting. In addition, the following constants are required: 

Address Constant 

d A 3000 
e 0 F 
f p 2 F 
gD X 

Then the previous example could be modified thus: 

c-1 s a F subtract P 200 F 
c u b F 
C+1 A d F add A 300 D 
C+2 U(c+6)F 
C+3 A e F add 0 F 
C+4 T(c+7) F cycle 
C+5 A g D add x m = 100, 102, ... , 298 
C+6 (Z F) becomes Am D 
C+7 (Z F) becomes T m D 
C+8 A b F 
C+9 A f F add P 2 F 
C+10 G c F 



166 ELECTRONIC DIGITAL COMPUTER 

The variable orders are formed from the count-number by orders (c+1) to 
(c+4). Note that since the variable orders and the count number always change 
by the same amount, their differences are constant. The variable orders may 
thus be formed in succession from the count-number by adding the differences, 
without clearing the accumulator. 

The cycle may be shortened by one order by using one of the variable 
orders itself as the counter. f is now used to store A 298 D instead of P 2 F, 
and b is no longer required. 

c-1 s a F subtract P 200 F 
c A d F' add A 300 D 
C+1 U (c+5) F 
C+2 A e F add 0 F 
C+3 T (C+6) F 
C+4 A g D add x cycle 
C+5 (Z F) becomes Am D 
C+6 (Z F) becomes T m D 
C+7 A (c+5) F 
C+8 s f F subtract A 298 D 
C+9 G c F 

Here, the order A m D itself is used as the counter. When it has reached 
A 298 D, C(Acc.) is no longer negative after obeying the order in (c+8), so 
the cycle is no longer repeated. It will be seen that the process is self-reset­
ting. Examples of such cycles will be found in library subroutines E4 (orders 
6 to 13), G1 (29 to 58), and K1 (4 to 12). 

Counting operations are not restricted to addition and subtraction; it is 
sometimes conveniE:nt to count by shifting. In subroutine E2,. for example, 
th~ number 2-34 is first placed in 6D. This number consists of a single digit 
at the right-hand end and this digit, or "strobe," is moved one place to the 
left at each repetition of the cycle. When it reaches the sign position it appears 
negative and repetition ceases. In L1, 83, and T4, a nega tive strobe moving to 
the right is used. The end of the process is detected by rounding off. When 
the strobe reaches -2-35 , the rounding-off brings it to zero and the sign digit 
changes. In all these examples, the shifting method is adopted because the 
strobe is also used in the calculation. 

A more elaborate form of counting by shifting is employed in print sub­
routines Pll (orders 39 to 44) and P14 (orders 33 to 38) to count the charac­
ters printed in a number , A s ingle counting operation controls not only the 
total number of decimal digits printed, but also the layout of subcolumns. 
Briefly, a certain psuedo-order is shifted one place to the left each time a 
character is printed, the sign digit is examined, and appropriate action taken. 
By suitably arranging the O's and 1's in the pseudo-order a great variety of 
results may be obtained, thus in this instance, a pair of 1's terminates a sub­
column and a single 1 terminates the number. 

Use of "tags" 

It is sometimes possible to do away with the need for counting by arrang­
ing that the numbers operated upon give an indication when the last repetition 
is reached. If this can be done, it often reduces the number of orders required 
in the cycle, and increases the speed of working. 



167 

For example, if an operation is being carried out on a series of positive 
numbers, a negative number can easily be detected and if inserted deliberately 
will cause repetition to cease. Such numbers, with distinctive properties used 
to control tt.e program, are called "tags." Further examples are the numbers 
0 and -1. 0 can be distinguished because when squared negatively it gives a 
non-negative result, and -1 because its square and its complement appear nega­
tive to the machine. Tags can be used in a great variety of ways, apart from 
the control of a simple cycle. Thus numbers at one end of a permitted range 
can be detected by adding a constant and testing the sign, and then the result 
of the discrimination may be used to operate a multiway switch (see below). 

Multiway switches 

It is often convenient to pursue any one of a number of routes after a 
certain point in a program. These routes are usually defined by a discrimi­
nating number used to fabricate an E or G order. This order then transfers 
control to any of a number of E or G orders placed consecutively in the store, 
which in turn switch control to the desired address. 

Thus, if a number a · 2-lb is in U1.e accumulator at a certain point and 
it is desired to switch control to one of a set of storage locations x 1, xz, x3, 
... , Xn thereby, it is possible to proceed as follows: 

s () A (b-1) 9 J adds a to E b () forming E b+a (), which is 
S+1 T (s+2) 9 placed in storage location (S+2) () • 
S+2 (Z F) 

(b-1)9 
b 
b+1 

E b () 
E Xl () 

E x 2 () 





INDEX 

Accumulator register, 4 
Accuracy, 25 
ACE, 12 
Aiken relay computer, 2 
Algebraic equations, 66 
Arithmetical unit, 3-4 
Automatic Sequence Controlled Calculator, 2 
Assembly subroutines, 27-32, 51, 91, 140-

141 
Auxiliary subroutines, 56 

Binary-decimal conversion, 12-14 
Binary point, 4, 6-7, 14 
Blank tape, 18, 42, 47, 50, 160 
Bell Telephone Laboratories, 2 

Checking, 14, 26 
Checking of programs, 38-39 
Checking subroutines, 40-41, 54-55, 79-82, 

118-124 
Closed subroutines, 22 
Code letters, 5, 15-16, 18 
Collation, 7 
Complex numbers, qperations on, 35, 78-79, 

89, 117-118 
Conditional orders, 7-8 
Constants, 20 
Control combinations, 17-18, 104, 161 
Controls of the EDSAC, 43-44 
Counting, 8, 164-167 
Counting subroutines, 41, 101-102, 154-155 
Cube root, 99, 150 

Dahlgren, 2 
Decimal-binary conversion, 12-14 
Differential equations, 32-34, 56-61, 86-88, 

132-135 
Division subroutines, 26, 82-83, 125-126 
Double-length arithmetic, 7 

EDVAC, 3 
ENIAC, 2-3 
Entry points, 104 
Erasing, 42 
Examples, 45-71 
Exponential subroutines, 83-84, 126-127 

Floating decimal subroutines, 35-37, 66, 73-
78, 105-117 

Four-address code, 11-12 

Gauss' formula, 27, 95-96, 145 

Harvard University, 2 

IDM Selective Sequence Electronic Calcula-
tor, 2 

Initial input routine, 15-18, 159-160 
Initial orders, 15-18, 159-160 
Input, 3-4, 12 
Input of orders, 15 
Input subroutines, 25-26, 96-98, 146-149 
Interpolation, 84-85, 127-132 
Interpretive subroutines, 34-37, 162-164 
Inverse interpolation, 84-85, 130-132 
Iterative formula, 8 

Keyboard perforator, 12-13, 42, 158 

Legendre polynomials, 88, 135-137 
Library, 15, 18, 20, 25, 43 
Library catalog, 25, 72 
Library categories, 72 
Library subroutines, 25-37, 43 
Link order, 22-24 
Location of errors in punching, 43 
Location of mistakes in a program, 39-41, 

53, 64 
Logarithms, 91, 139-140 
Long storage location, 3 

Manipulation of a polynomial, 89-90, 138-
139 

Master routine, 27 
Mathematical checks, 57 
Matrices, 102-103, 155-157 
Mistakes in programming, 38-41 
Modification of orders, 8-9 
Moore School of Electrical Engineering, 3 
Multiaddress codes, 11-12 
Multiplier register, 4, 7 
Multiway switches, 167 

National Physical Laboratory, 12 
von Neumann, 3 
Notation, 20-21, 104 
Number tape, 47 
Numerical equivalents of orders, 9 

Open subroutines, 22 
Optimum programming, 12 
Order code, 5-6 
Order tape, 47 
Organization of the EDSAC, 43 
Output, 3, 5 
Output subroutines, 25-26, 50, 92-94, 141-

144 

Packing of orders, 37, 162-164 



Paper tape, 12-13 
Parameters, preset, 23 , 104 
Parameters, program, 23 
Photoelectric tape-reader, 4, 43 
Polynomials, 89-90, 138-139 
Preset parameters, 23 , 104 
Print heading, 91 
Print subroutines, 92-94, 141-144 
Program parameters, 23 
Pseudo-orders, 17, 104 
Punched tape, 4, 158 
Punching of orders, 15 

Quadrature, 27, 48, 61, 95-96, 144-146 

Reciprocal square root, 99 
References, 21 
Repetitive cycle, 8-11 

INDEX 

Speed, 25 
Square root, 98, 149-150 
Stage I, 5 
Stage II, 5 
Starting, 18, 43-44 
Storage location, 3 
Storage of library subroutines, 43 
Store, 3 
Subroutines, 1 
Subroutines, closed, 22 
Subroutines, interpretive, 34-37, 162-164 
Subroutines, open, 22 
Subroutines relating to functions , 84-86, 127-

132 
Summation of power series, 88-89, 137-138 

Tape comparator, 42 
Tape duplicator, 42 

Runge-Kutta process, 32-33, 86-87, 132-134 Tape punching and editing, 42-43 
Teleprinter, 5, 13-14, 50, 158 
Three-address code, 11-12 
Transfer order, 17 

Sandwich digit, 4 
Scale factors, 26 
Selective Sequence Electronic Calculator 

(IBM), 2 
Short storage location, 3 
Sign digit, 3 
Simpson's rule, 27; 61, 95, 144-145 
Single-address code, 11-12 

Trigonometrical subroutines, 27, 99-100, 151-
154 

Tchebycheff polynomials, 27 

Univers\ty of Pennsylvania, 3 


	img135
	img137
	img138
	img139
	img141
	img142
	img143
	img144
	img145
	img146
	img147
	img148
	img149
	img150
	img151
	img152
	img153
	img154
	img155
	img156
	img157
	img158
	img159
	img160
	img161
	img162
	img163
	img164
	img165
	img166
	img167
	img168
	img169
	img170
	img171
	img172
	img173
	img174
	img175
	img176
	img177
	img178
	img179
	img180
	img181
	img182
	img183
	img184
	img185
	img186
	img187
	img188
	img189
	img190
	img191
	img192
	img193
	img194
	img195
	img196
	img197
	img198
	img199
	img200
	img201
	img202
	img203
	img204
	img205
	img206
	img207
	img208
	img209
	img210
	img211
	img212
	img213
	img214
	img215
	img216
	img217
	img218
	img219
	img220
	img221
	img222
	img223
	img224
	img225
	img226
	img227
	img228
	img229
	img230
	img231
	img232
	img233
	img234
	img235
	img236
	img237
	img238
	img239
	img240
	img241
	img242
	img243
	img244
	img245
	img246
	img247
	img248
	img249
	img250
	img253
	img254
	img255
	img256
	img257
	img258
	img259
	img260
	img261
	img262
	img263
	img264
	img265
	img266
	img267
	img268
	img269
	img270
	img271
	img272
	img273
	img274
	img275
	img276
	img277
	img278
	img279
	img280
	img281
	img282
	img283
	img284
	img285
	img286
	img287
	img288
	img289
	img290
	img291
	img292
	img293
	img294
	img295
	img296
	img297
	img298
	img301
	img302
	img303
	img304
	img305
	img306
	img307
	img308
	img309
	img310
	img311
	img312



