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24 14 E m+3 θ E m+3 F 

32 16 ref. 12 ref. 11 

33 1 further a further 
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  and follow on next line by 
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61 31 In integral, for -x read x 
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PREFACE 

The methods of preparing programs for the EDSAC described in this book 
were developed with a view to reducing to a minimum the amount of labcr re­
quired, and hence of making it feasible to use the machine for problems which 
require only a few hours of computing time as well as for those which require 
many hours . This necessitated the establishment of a library of subroutines 
and the development of systematic methods for constructing programs with 
their aid. The methods are described in terms of the code of orders used in 
the EDSAC, but for the main part they may readily be translated into other 
order codes. It is hoped, therefore, that those who have charge of similar 
machines, or who are faced with the task of putting a new machine into opera­
tion, will find some of the ideas and methods presented here of assistance . It 
is hoped also that the book will be of use to those who wish to know something 
about the form in which problems are presented to an automatic digital calcu­
lating machine and who wish to assess the possibilities of the application of 
such machines to their own subjects. 

Many work-ars in the Mathematical Laboratory have contributed to the de­
velopment of the methods described in this book. We would mention especially 
the following: J. M. Bennett (to whom the material described in Appendix D is 
due), R. A. Brooker, E . N. Mutch, B. Noble, J. P. Stanley, ancl B. H. Worsley. 
To this list we would add the name of Professor D. R. Hartree, F .R.S. who has 
also very kindly contributed a foreword to this book. The following also assisted 
in the formation of the library of subroutines: K. N. Dodd, L. A. G. Dresel, 
A. E. Glennie, E. E. C. McKee, and C. M. Munford. We are especially grate­
ful to Mr. Mutch for his assistance with the editorial work , in particular for 
undertaking the heavy task of preparing Parts II and III for the press. 

We are deeply conscious of the debt we owe to our colleagues engaged on 
other projects, especially to those who were instructors of a course attended 
by one of us at .the Moore School of Electrical Engineering, University of Penn­
sylvania, in 1946, and to Dr. J. von Neumann and Dr. H. H. Goldstine of the 
Institute for Advanced Study, Princeton, whose privately circulated reports we 
have been privileged to see. 

We would als0 like to express our gratitude to Dr . Z. Kopal for the help 
he has freely given in proofreading and in seeing the book through the press. 
We are most grateful to the publishers and their staff for the care that they 
have taken and for the rapidity with which they have done their work. 

Cambridge, England 
March, 1951 

M. V.W. 
D. J. W. 

S. G. 





FOREWORD 

by Professor D. R. Hartree, Ph.D., F.R.S. 

To the potential user of an automatic digital calculating machine, the suc­
cessful design and construction of the machine itself is only a first step, though 
certainly an essential one. In order that the machine should in practice be use­
ful to him in the calculations he may desire to carry out with its aid, the pro­
vision of an adequate organization for using the machine is as important as the 
machine itself. 

One form of such an organization is based on a library of subroutines for 
carrying out standard processes, and facilities for using it. Provision of s uch 
a library has two important effects. First, it relieves the user of the machine 
of the greater part of the work of programming calculations in detail ; a library 
subroutine can be incorporated as a unit in his program, without it being neces­
sary for him to work through the sequence of operations by which the calculation 
carried out by the subroutine is effected; and it is quite possible for eighty per­
cent of a complete program to be carried out by the use of such libra ry subrou­
tines. And secondly, in making up a program, use of library subroutines which 
have been thoroughly checked limits the possibilities of mistakes in program­
ming, and correspondingly reduces the expenditure of time, both of the machine 
and of the programmer, in diagnosing and correcting mistakes. In order that 
such a library of subroutines should be practically useful, it seems des irable, 
if not indeed necessary, that the subroutines s hould be drawn up in a form which 
provides a certain amount of flexibility in their use, so that slight variations 
can be made in them in order to suit the contexts in which they may be used in 
particular applications. 

The process of building up such a library of subroutines, and testing its 
value by practical use, appears to have proceeded further at the Mathematical 
Laboratory of the University of Cambridge than elsewhere, and in this book 
the authors, who together have been primarily concerned in this development , 
give an account of the present state of this aspect of the study of means of using 
an automatic calculating machine effectively. It is the result of a considerable 
amount of exploratory work on such matters as ways in which to specify operat­
ing instructions to the machine, a nd to draw up s ubroutines , so as to give the 
required flexibility, ways in which to enter and leave subroutines, and different 
types of subroutines. 

The results of this work do not provide a unique system, nor are they to be 
regarded as forming a perfect one; they depend on the order code and other 
features of the functional design of a machine which were decided already two 
years ago, before some of the developments in programming had been envisaged. 
But that it is a practical and useful system has been tested by experience; it 
divests programming of the appearance of being something of a magic art, 
closed except to a few specialists, and ma kes it an activity s imple enough to be 
undertaken by the potential user who has not the opportunity to give his whole 
time to the s ubject. 

The subject is one which is still developing, but the authors are, I think, to 
be commended for drawing up this account of the present stage of their contri­
bution to it, both in general ideas and in details, and so making this work avail­
able to others working in this same field . 

Cavendish Laboratory 
Cambridge, England 

January, 1951 

D. R. Hartree 





PART I 

CHAPTER 1 

THE DESIGN OF PROGRAMS 

FOR ELECTRONIC COMPUTING MACHINES 

1-1 Introduction. 

A digital computing machine can perform only the basic operations of 
arithmetic, namely, addition, subtraction, multiplication, and division. In 
order to be able to solve a mathematical problem such as the integration of 
a differential equation it is first necessary to express the problem as a se­
quence of such operations. This may call merely for some expenditure of 
labor or it may involve considerable mathematical manipulation; for example, 
where derivatives or integrals are involved it may be necessary to replace 
the continuous variables by variables which change in discrete steps. 

If the computation were to be performed by a human computer it would 
be possible to communicate the problem to him in a series of instructions or 
orders, each specifying an elementary arithmetical operation. It is conven­
ient to use the same nomenclature when speaking of a machine but here the 
"instructions," or "orders," are groups of symbols punched on a paper tape 
or prepared in some other form which can be fed into a machine. A sequence 
of orders for performing some particular calculation is called the program. 
It must contain everything necessary to cause the machine to perform the re­
quired calculations and every contingency must be foreseen. A human com­
puter is capable of reasonable extension of his instructions when faced with 
a situation which has not been fully envisaged in advance, and he will have 
past experience to guide him. This is not the case with a machine. 

Since an automatic computing machine can perform only a very limited 
number of basic operations, the simplest mathematical calculation requires 
an extended sequence of orders. The labor of drawing up a program for a par­
ticular problem is often reduced if short, ready-made programs for perform­
ing the more common computing operations are available. These short pro­
grams are usually called subroutines, and they may be incorporated as they 
stand in the program, thus reducing the amount of work which has to be done 
ab initio. If it is intended that an electronic computing machine shall be used 
on a wide variety of problems it is worth-while to spend much effort on the 
establishment of an extensive library of such subroutines, together with a work­
able system whereby selected subroutines may be combined to form a program. 

This book contains a detailed description of the library of subroutines 
used in the Mathematical Laboratory of the University of Cambridge in con­
junction with the EDSAC (Electronic Delay Storage Automatic Calculator) and 
of the way in which programs can be constructed with its aid. There will be 
some discussion of the best way to construct subroutines for numerical quad­
rature, the integration of differential equations, and other processes, but the 
more theoretical problems that arise in numerical analysis are outside the 
scope of this book. Some of these, for instance those concerned with the con­
vergence of iterative processes and with the accumulation of rounding-off 
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2 ELECTRONIC DIGITAL COMPUTER 

errors, are of great importance and interest and are likely to arise in acute 
form when planning the large-scale computing operations which an electronic 
machine makes possible. The present book, however, is concerned with the 
steps which must be taken to make the machine perform the numerical proc­
esses necessary to solve a problem when once it has been decided what those 
processes are. 

There are naturally many ways, all similar in principle but differing in 
detail, in which subroutines may be used to construct programs, and no attempt 
will be made here to discuss all the possible alternative methods. It is hoped, 
however, that the account given of those at present being used with the ED SAC 
will be of general interest. The ideas and techniques described are applicable, 
with suitable adaptation, to other electronic calculating machines designed on 
the same general principles. 

1-2 Types of automatic computing machines. 

In large automatic computing machines which depend for their action on 
electromechanical devices the orders are usually punched in coded form on 
paper tape, one group of holes corresponding to each order. These holes are 
read by a sensing device and cause the machine to perform the operation 
called for; the tape is then advanced so that the next group of holes is under 
the reading head and the next order is similarly executed. In addition to a 
sensing mechanism for the main prograaa tape, several other sensing mechan­
isms are usually provided. These can be used to read endless loops of tape 
which contain orders for performing parts of the program which have to be 
repeated a number of times. Control of the machine is passed from one tape 
to another as required. Machines which work in this manner are the Automatic 
Sequence Controlled Calculator at Harvard University, relay calculators built 
by the Bell Telephone Laboratories, the Aiken relay computer at Dahlgren, Md., 
and the IBM Selective Sequence Electronic Calculator. 

Such a system, while admirable for controlling a relay machine, would 
not be fast enough for a machine in which the computation is performed by elec­
tronic means and in which it is desired to realize the very high speed which 
this makes possible. The ENIAC, which was the first purely electronic ma­
chine to be built, therefore used a system in which the various steps of the 
program were initiated by "program pulses" passed from one unit of the ma­
chine to another. For example, to cause a number standing in one register or 
"accumulator" to be added to the number standing in another accumulator, 
both accumulators needed to be stimulated by a program pulse, one to trans­
mit and onf' to receive. When the operation was finished both accumulators 
emitted a pulse, and one of these (it did not matter which, since they both 
occurred at the same time) was used to stimulate the next action. Putting a 
problem on the machine consisted, therefore, of making a large number of 
connections by means of plugs and sockets and setting a number of switches. 
The main objection to this system is that it takes some time to change over 
from one problem to another. In all later machines, proposed or completed, 
the orders are expressed in a coded form and placed in advance in a quick­
access store, or memory, frQm which they are subsequently taken and executed 
one by one. The orders are usually passed into the machine by means of a 
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punched tape, or some similar medium, but this is used simply as an inter­
mediary in the process of transferring the program to the store, and does 
not control the computing action of the machine directly. 

A store, or memory, is needed in automatic computing machines for 
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the purpose of holding numbers, and in the EDSAC the same store is used to 
hold the orders; this is made possible by the device of expressing the orders 
in a numerical code. Several machines working on the same principles as the 
EDSAC are now in operation in the United States and in England. These prin­
ciples derive from a report drafted by J. von Neumann in 1946 in connection 
with a new machine (the EDVAC) then projected by the Moore School of Elec­
trical Engineering (University of Pennsylvania) where the ENIAC had been 
built. It is found that machines designed along the lines laid down in this re­
port are much smaller and simpler than the ENIAC and af the same time more 
powerful. The methods by which programs are prepared for all these machines 
are, as might be expected, similar, although the details vary according to the 
different order codes used. Anyone familiar with the use of one machine will 
have no difficulty in adapting himself to another. All machines so far com­
pleted use the binary system for internal calculations but this is not an essen­
tial feature and several machines under construction use the decimal system. 
Even if the binary scale is used inside the machine, it is only rarely that the 
programmer needs to take notice of this fact, since input and output can be 
performed in the scale of ten, the necessary conversion being done by the 
machine it~elf as part of the progra~. 

1-3 Description of the EDSAC. 

In order to be able to construct programs, some knowledge of the main 
units of the machine and their interconnection is required, although it is not 
necessary to understand the precise mode of functioning of the various elec­
tronic circuits. There are, from the point of view of the programmer, four 
main parts to the machine: the store, or memory, the arithmetical unit, the 
input, and the outp.ut mechanisms. There is also the control unit which emits 
the electrical signals that control the action of the other units. Fig. 1 shows 
the connections between the various units. The store of the EDSAC, which is 
of the ultrasonic variety, was designPd to have capacity for 1024 numbers of 
17 binary digits each, although so far only half this capacity has been available. 
Negative numbers are represented inside the machine by their true comple­
ments and the most significant digit of any number is treated in the arithmeti­
cal unit as a sign digit. The sign digit is a zero if the number is positive and 
a one if it is.negative. The 512 numbers are held in 512 "storage locations" 
numbered serially from 0 to 511 for reference purposes. The reference num­
ber of the storage location holding a number x is sometimes called the address 
of x. A special feature of the EDSAC is the possibility of combining any two 
consecutive storage locations (provided that the first has an even serial num­
ber) into a single long storage location capable of holding a number with 35 
binary digits, one of which is a sign digit. Such a number is called a "long 
number" to distinguish it from a "short number" of 17· binary digits. It is 
possible to accommodate 35 digits in a long storage location, and not 34 only, 
since in the ultrasonic store of the EDSAC the digits of successive numbers 
are stored end to end and one digital position between each is left unused; 
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~-- .J 

Fig. 1 Schematic diagram of the EDSAC 

when two storage locations 
are combined this position 
can be used to contain an 
extra digit (sometimes 
called the "sandwich" 
digit). It may be noted 
that a long number con­
tains the equivalent of 
about ten decimals and a 
short number the equiva­
lent of about five decimals. 

The arithmetical unit 
may best be described as 
being an electronic ver­
sion of an ordinary desk­
type calculating machine. 
In it the operations of 
addition, subtraction, and 
multiplication may be per­
formed; there is no divider 
in the EDSAC and the 
means used for perform­
ing division will be de­
scribed later. The arith­
metical unit contains an 
accumulator register, in 
which the results of addi­
tions, subtractions, and 
multiplications appear 
and in which a series of 

such results may be accumulated, There is another register which is used 
to hold the multiplier during the process of multiplication. The multiplier is 
so constructed that numbers are treated as though they lie in the range 
-l~x<l, that is, the binary point is assumed to come immediately to the 
right of the sign digit. The programmer should, therefore, rearrange the 
formulas before drawing up the program, so that all the quantities which 
need to be handled inside the machine are within the range -l~x<l. This 
may always be done if suitable positive or negative powers of two are intro­
duced as multiplying constants; in the program these constants are repre­
sented by shift orders. An alternative procedure, although not one to be 
generally r~commended, is for the programmer to adopt some other conven­
tion as to the position of the binary point and to program a shift after each 
multiplication; for example, if the binary point is assumed to be between the 
second and third digits to the right of the sign digit, e;,.ch multiplication must 
be followed by a shift of 2 places to the left. 

Five-hole punched tape, read by a photoelectric tape reader, is used 
for input to the EDSAC. All the orders and numbers required for the solution 
of a problem are punched on a single tape, which may, however, be divided 
into two or more pieces for insertion in the tape reader one after the other. 
Library subroutines are stored on separate short lengths of tape and copied 
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mechanically on to the program tape. The output mechanism is a teleprinter. 
Further information about the engineering of the EDSAC will be found in the 
papers listed on page 21. 

1-4 The EDSAC order code. 

The action of the machine proceeds in two stages; in stage I an order 
passes from the store into the control unit; in stage II the order is executed. 
The machine then proceeds automatically to repeat stage I, in general taking 
the order from the storage location following that containing the order just 
executed. An exception to this rule will be discussed in Section 1-6. Each 
order calls for one simple operation to be performed; for example, it may 
cause some number to be extracted from the store and added to whatever 
happens to be in the accumulator, the sum being left in the accumulator, or 
it may cause the contents of the accumulator to be transferred to the store. 
Some orders, for example left or right shift orders, do not involve the use of 
the store at all. 

There are in the EDSAC code eighteen orders from which the program­
mer can build up his program. They are written in the form of a letter indicat­
ing the function of the order, and a number (the address) specifying the location 
(if any) in the store concerned. The address is followed by the code letter F if 
it refers to a short storage location, and by the code letter D if it refers to a 
long storage location. The full order code for the EDSAC is as follows: 

Order Code 

Where the code letter terminating an order is not shown it may be either F 
or D. 

An 
S n 

Hn 

Vn 

Nn 

Tn 

Un 

Cn 

*R D 

Add the number in storage location n into the accumulator. 
Subtract the number in storage location n from the 

accumulator. 
Copy the number in storage location n into the multiplier 

register. 
Multiply the number in storage location n by the number 

in the multiplier register and add the product into the 
accumulator. 

Multiply the number in storage location n by the number 
in the multiplier register and subtract the product from 
the accumulator. 

Transfer the contents of the accumulator to storage loca­
tion n and clear the accumulator. 

Transfer the contents of the accumulator to storage loca­
tion n and do not clear the accumulator. 

Collate the number in storage location n with the number 
in the multiplier register and add the result into the 
accumulator; that is, add a "1" into the accumulator 
in digital positions where both numbers have a "1", 
and add a "0" in other digital positions. 

Shift the number in the accumulator one place to the 
right; that is, multiply it by 2- 1 • 
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Shift the number in the accumulator p places to the right; 
that is, multiply it by 2-P (2~~12). 

Shift the number in the accumulator 15 places to the right; 
that is, multiply it by 2- 15 

Shift the number in the accumulator one place to the left; 
that is, multiply by 2. 

Shift the number in the accumulator p places to the left; 
that is, multiply by 2P (2~p~12). 

Shift the number in the accumulator 13 places to the left; 
that is, multiply by 213 • 

If the number in the accumulator is greater than or equal 
to zero, execute next the order which stands in storage 
location n; otherwise proceed serially. 

If the number in the accumulator is less than zero, execute 
next the order which stands in storage location n; other­
wise proceed serially. 

Read the next row of holes on the input tape and place the 
resulting integer, multiplied by 2-16, in storage location n. 

Print the character now set up on the teleprinter and set 
up on the teleprinter the character represented by the 
five most significant digits in storage location n. 

Place the five digits which represent the character now 
set up on the teleprinter in the five most significant 
places in storage location n, clearing the remainder of 
this location. 

Ineffective; machine proceeds to next order. 
Round-off the number in the accumulator to 34 binary 

digits; that is, add z-35 into the accumulator. 
Stop the machine. 

*The addresses in these orders need not be zero. 
**The addresses in these orders may be k · 2P- 2 where k is odd, pro­

vided that the addresses do not exceed 2047. 

1-5 Notes on the order code. 

As a simple example of the use of this code, suppose that it is required 
to evaluate the expression X+Y+xy, taking x and y to be the contents of the 
short storage locations 50 and 51, and to place the result in the long storage 
location 52. A program for doing this is as follows (it is assumed that the 
accumulator is clear at the beginning) : 

A 50 F 
A 51 F 
H 50 F 
V 51 F 
T 52 D 

The a.ccumulator has sufficient capacity to hold a number having 71 
binary digits, of which one is regarded as a sign digit. As in the store, the 
binary point is immediately to the right of the sign digit. When two long num­
bers are multiplied together the resulting 69 digits are all available in the 
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accumulator. A U order or a T order will, however, transfer only the 35 most 
significant digits (or if the order is terminated by an F, the 17 most significant 
digits) to the store, although a T order always clears the whole of the accumu­
lator. If it is desired to retain all the 69 digits which are obtaint;!d by multiply­
ing two long numbers together, then the 35 most significant digits must first 
be transferred to the store by means of a U order and the contents of the ac­
cumulator shifted 34 places to the left; the 34 least significant digits are then 
in a suitable position to be transferred to the store by a T order. Note that it 
is necessary to use three left shift orders, since in the EDSAC the number in 
the accumulator cannot be shifted more than 13 places to the left by a single 
shift order. 

If an A order is used to add a number x from the store to the number y 
standing in the accumulator the correct answer will be obtained only if X+Y 
satisfies the condition -1~x+y<1. If this condition is violated the number 
appearing in the accumulator will by x+y-2 if X+YZl, and X+Y+2 if x+y<-1. In a 
similar way, if the effect of any other order is to cause the capacity of the 
accumulator to be exceeded, the number which actually appears in the accumu­
lator is that obtained by adding or subtracting a suitable multiple of 2 from 
the correct result. 

The C order (collation) is useful when it is required to pick out specified 
groups of digits from a number. For example, the first four binary digits, 
not including the sign digit, of a given number may be isolated by collating the 
given number with the number 01111000000000000000000000000000000, that is, 
15/16. 

The number placed in the multiplier register by an H order remains 
there until it is replaced by another number introduced by another H order. 
Thus if a series of numbers are to be multiplied by a constant, one H order 
only is necessary to transfer the constant to the multiplier register at the 
beginning of the operation. 

1-6 The use of conditional orders. 

An exception to the rule that the machine executes orders in the sequence 
in which they stand in the store occurs when a conditional order (E or G) is 
encountered. The action then depends on the sign of the number in the accumu­
lator; if this is negative an E order causes the machine to pass straight on to 
the next order, while if it is positive or zero the next order is taken from some 
other location in the store. In the latter case control is said to be transferred 
to the new storage location. The action of a G order is similar, except that 
control is transferred if the number in the accumulator is negative. The fol­
lowing program for finding the absolute value of the number in storage location 
123 illustrates the use of a conditional order. 

Location 
of order Order Notes 

the accumulator is assumed to be clear at 
the start 

301 A 123 F the number in 123 is added into the accumu-
lator 

302 E 305 F the sign is tested 



8 

303 
304 
305 

T 
s 
T 

ELECTRONIC DIGITAL COMPUTER 

~} 
F 

if negative, the number in the accumulator 
is changed in sign 

the result is placed in location 0 

Conditional orders, however, are much more important than this ex­
ample would indicate, since they enable the programmer to cause a group of 
orders to be repeated a number of times and to transfer control from one 
section of the program to another. Conditional orders thus provide facilities 
equivalent to those obtained by the use of endless loops of tape on the machines 
mentioned earlier. The following example shows how the operations called 
for by the sequence of orders held in storage locations 100 to 109 may be re­
peated six times. 

Method. A number in the store is arranged to have the values -5, -4, 
... 0 units after the group of ordErs has been obeyed once, twice, ... six 
times. Thus when this counting number becomes zero, the process has been 
performed six times. 

It is assumed that storage location 0 can be used to hold the counter, 
and that storage locations 1 and 2 contain 6 · 2- 15 and 2- 15 respectively. 

Location 
of order Order Notes 

the accumulator is assumed clear at the 
start 

97 s 1 

~} places new value of counting number in 98 A 2 storage location 0 (initially -5 · 2-15 ) 
99 T 

100 } orders to be repeated. It is assumed that 

109 they leave the accumulator empty 

110 A F test whether the counting number is zero 
111 G 98 F 

In many cases it is not known in advance how many times the sequence 
of orders mu~t be repeated. An example occurs in the calculation of a recip­
rocal root a-~ from the iterative formula Xn+1 = 1/2 xn(3-ax;;). The iteration 
is to be started with a first approximation Xo and stopped when lx n_1 -xni<E., 
where £ is a positive quantity given in advance. This may be done by means 
of a sequence of orders which, given the value of Xn in a certain storage loca­
tion, say m, calculates Xn+1 and transfers it to m, where it replaces Xn· In 
addition, the quantity \x n+1-Xn\ - f.. is computed and left in the accumulator. If 
this quantity is positive or zero, the next order, which is an E order, transfers 
control back to the beginning of the sequence; otherwise control passes straight 
on. If storage location m contained x0 before the sequence of orders was oper­
ated for the first time, this storage location will now contain a-~ . 

1-7 Modification of orders by the program. 

It has been explained that orders are expressed inside the machine in a 
numerical code,•and that the numbers which represent them are held in the 
same store as other numbers needed in the calculation. If a number which 
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stands for an order is modified, for example by having a constant added to it, 
it then stands for a different order, and if the section of the program contain­
ing it is operated twice, once before and once after the modification, different 
operations will be performed. This facility of being able to modify the orders 
in the program by performing arithmetical operations on the numbers repre­
senting them is of great importance, and it is perhaps the feature most charac­
teristic of program design for machines like the EDSAC. The operations re­
quired for this purpose are performed in the arithmetical unit in the same way 
as other arithmetical operations. 

Some examples of the use which can be made of this facility are given 
below. It is first necessary, however, to explain the numerical code by which 
orders are represented inside the ED SAC. The order X n. F (where X stands 
for any letter in the order code) is represented by the number 2-4 x+2- 15 n, 
where the value of x for the various orders is jiven in the table below. The 
order X n D is represented by 2-4 X+2- 15 n+2- 1 • 

x x 
A -4 
c -2 
E 3 
F -15 
G -5 
H -11 
I 8 
L -7 
N -10 
0 9 
R 4 
s 12 
T 5 
u 7 
v -1 
X -6 
y 6 
z 13 

Thus A 50 F would be represented by the number 2-4 ( -4)+2- 1~ • 50; this 
may be converted into the number representing A 51 F by adding 2- 15 to it. 

It is often convenient to drop the distinction between orders and the 
numbers representing them, and to speak, for example, of " the order con­
tained in storage location n," and of orders being modified by having constants 
added to them. 

A sequence of orders designed to be repeated a number of times may 
contain a group of orders which modify other orders in the same sequence. 
Each time the sequence is operated it will then cause a different s et of calcu­
lations to be performed. In this way it is possible to use repetitive cycles to 
perform calculations which do not at fir s t s ight appear to lend themselves to 
such treatment. The advantage of doing this is that programs can often be 
constructed with many fewer orders than would otherwise be necessary, and 
therefore require less s pace in the store. As an example, suppose that the 
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sum of the contents of storage locations 100, 101, .•. 149 is to be added to the 
contents of storage location 5. 

Method. The contents of storage location 100 are added to those of 
storage location 5 by means of a group of orders containing the order A 100 F. 
The address specified in this particular order is then increased by one, and 
the group of orders repeated. Thus the contents of storage locations 100, 101, 
... are added in succession to the contents of storage location 5. It is neces­
sary to terminate this process, and a counter is used as in the previous ex­
ample. 

It is assumed that storage location 0 can be used to hold the counter, 
and that storage locations 1 and 2 contain 50· 2- 15 and 2-15 respectively. 

Location 
of order Order Notes 

200 s 1 

~} 201 A 2 set counter (initially -49 · 2- 15 ) 

202 T 
203 A 100 F the address in this order is increased by one 
204 A 5 F each time the cycle is repeated 
205 T 5 F 
206 A 203 

~} increase by one the address specified in 207 A 2 
208 T 203 order 203 

209 A ;} test for end of process 
210 G 201 

This p:rogram may be shortened by using the variable order for count­
ing. It then appears as below. Storage location 1 contains the number equiva­
lent to the order A 150 F and storage location 2 contains 2- 15 

Location 
of order Order Notes 

200 T F clears accumulator 
201 A 5 !} add appropriate number to the contents of 
202 A 100 
203 T 5 

storage location 5 

204 A 202 

~} increase the address specified in order 205 A 2 
206 u 202 

202 by one 

207 s 1 ;} test if the order contained in location 202 
208 G 200 has become A 150 F; if not, repeat the 

process. 

This example contains nine orders. If it were written out in full, that 
is, if a repetitive cycle were not used, 52 orders would be necessary. A more 
complete discussion of methods of counting will be found in Appendix F. 

Occasionally, where there are very few repetitions, it is better to write 
out the orders in full. This reduces the machine time taken by the process, 
since no time is consumed in modifying orders or in counting the number of 
repetitions, and this fact may be important if the whole process has to be 
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performed a large number of times. Moreover, if the accumulator is not re­
quired for counting and for modifying orders, the program can often be further 
shortened by making use of the facility of accumulating sums and products. 
The total number of orders may even be fewer than if a cycle is used. 

1-8 Multiaddress codes. 

In the EDSAC order code each order has reference to, at the most, one 
location in the store; it is thus described as a single-address code. Other 
machines have multiaddress codes in which each order may refer to several 
locations in the store. For example, one order in such a code might be' 

A r s t add the number in storage location r to the num­
ber in storage location s and transfer the re-
sult to storage location t. 

This is an example of a three-address code. One order in such a co~e takes 
up more space in the store than an order in a single-address code (in the 
EDSAC it would require a long storage location instead of a short one) but it 
causes a more complicated set of operations to be carried out. Thus the 
single order A r s t has the same effect as the group of orders A r, A s, T t 
in the EDSAC order code, and requires one long storage location instead of 
three short ones. However, use of a three-address code does not always 
enable a similar saving to be made; for example, to add the four numbers in 
storage locations r, s, p, and t together and to place the result in storage loca­
tion q the following three orders are required: 

A r s q 
A q p q 
A q t q. 

In the EDSAC order code the following group would be required: 

A r 
A s 
A p 
A t 
T q 

In this case the orders in the single-address code actually take less space 
than those in the three-address code, the reason being that when using the 
single-address code the programmer can take advantage of the fact that sums 
can be accumulated in the accumulator . On the whole it is doubtful whether 
more than a slight saving in the storage capacity reyuired to hold the orders 
can be obtained by using a three-address code. Its 'lse does, however, enable 
the speed of the machine to be increased slightly, si.1ce the number of orders 
which have to be extracted from the store is reduced. On the other hand, the 
complexity of the control section of the machine is increased. 

From the point of view of the programmer there is very little to choose 
between the convenience of using single- and three-address codes; in particu­
lar, counting operations can be performed and orders modified in a three­
address code by methods exactly analogous to those described in this chapter 
for use with a single-address code. The decision as to whether a machine 
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should have a single-address or a three-address code should rest rather with 
the designer than with the prospective mathematical user. 

In most machines the orders are executed, as in the EDSAC, in the 
serial order in which they stand in the store, except when transfer of control 
is brought about by the action of a transfer order . An alternative system is 
to include in each order a specification of the location from which the next 
order is to be taken. This leads to a four-address code in which three of the 
addresses are used as in a three-address code and the fourth contains the 
address of the next order to be executed. This has advantages in the case of 
a machine which uses ultrasonic tanks (mercury memory) or a magnetic drum 
for its main store. With either of these stores numbers are available only at 
certain times in a fixed cycle. If a number or order is to be extracted from a 
random location there will therefore be a delay, equal on the average to half 
the circulation time in the case of the ultrasonic store and to half the rotation 
time in the case of the magnetic drum. If, however, the programmer has con­
trol over the location from which the next order is to be obtained, he can re­
duce this delay by placing the orders and numbers as far as possible in loca­
tions chosen so that they become available at the moment they are required. 
He is assisted in doing this if he is provided with a number of special storage 
registers which have an access time short compared with that of the main store; 
for example, a machine using an ultrasonic store may have a number of short 
mercury tanks, each accommodating a single number in addition to the long 
tanks of the main store, each of which holds 16 or 32 numbers. This procedure 
is sometimes called optimum programming and the first machine to be specially 
designed with a view to its adoption was the ACE (Automatic Computing Engine), 
of which a pilot model is now working at the National Physical Laboratory at 
Teddington, Middlesex, England. Optimum programming makes the work of 
the programmer more complicated, because it introduces considerations con­
cerned with the timing of operations in the machine and thus confuses the es­
sentially uithmetical nature of programming as stressed in this book. How­
ever, a compromise can be reached if it is possible for the library subroutines 
to be constructed in accordance with the principles of optimum programming 
and for the programmer to construct the other parts of the program in the 
ordinar y way. In this way a high proportion of the gain in speed made possible 
by the use of optimum programming can be obtained without complicating the 
task of the programmer unduly. It should be especially noted that the provi­
sion of a four-address code of the kind described here and its use in conjunc­
tion with optimum programming technique are devices for mitigating the funda­
mental disadvantages of a delay-type store, and are of no assistance if a store 
of the electrostatic variety is used. 

1-9 Binary-decimal conversion. 

It has already been mentioned that conversion of numbers to and from 
the binary system is performed by the machine. Full details of how this is 
done may be found by examining the input and output subroutines in Part III 
of this book; a general explanation of the principles used will be given in the 
present section. 

The paper tape used for input to the machine is prepared by means of 
a keyboai d perforator. There are five positions across the tape in which 
holes may or may not be punched and one row of holes may therefore be said 
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to represent a five-digit binary number. The keyboard perforator has 32 keys, 
labeled with combinations of letters, figures, and other symbols, as in the 
case of an ordinary teleprinter keyboard. Each key causes one row of holes 
to be punched on the tape according to the code given in Appendix A. The 
corresponding five-digit binary numbers are also given in this Appendix.* It 
will be seen that the figures from 0 to 9 are represented by their binary equiva­
lents. For example, 5 is represented by 00101, 6 by 00110, etc. 

Suppose that it is required to put the number 0.21973 into the machine. 
The successive digits of this number are punched in order on the input tape. 
When the tape is read by the machine acting under the control of a succession 
of I orders in the program, the binary equivalents of the following numbers 
will be transferred to the store in succession: 

2 X 2- 1 6 

1 X 2- 16 

9 X 2- 16 

7 X 2-16 

3 X 2- 16 

The program contains orders which cause the first of these numbers to be 
multiplied by 104 , the second by 103 , the third by 102 , the fourth by 10, the 
last by 1, and the results to be added together. This calculation is carried 
out in the binary scale so that the binary equivalent of 21973.2- 16 is now to 
be found in the store. A further multiplication by 10-5 • 2 16 forms there­
quired number in its binary form. It will be seen that the decisive step in 
the conversion of the number to the binary scale takes place in the keyboard 
perforator, which converts the individual decimal digits of the number to 
their binary form. 

In drawing up the program for this conversion it is necessary to avoid 
the use of numbers that lie outside the range -1:s;.x<l. For example, it is not 
possible to multiply by 10 directly; instead, it is necessary to multiply by 
10/16 and to shift the result four places to the left. 

Conversion of binary numbers to their decimal form during output is 
done in an analogous manner. The teleprinter accepts a five-digit binary num­
ber (actually the five most significant digits in the storage location specified 
in the output order) and prints the corresponding character. Here again the 
code is so chosen that the binary numbers from 0 to 9 are printed as the cor­
responding decimal figures; for example, 00101 is printed as 5, 00110 as 6, etc. 
The program must therefore cause the successive decimal digits of the given 
number to be calculated in their binary form; final conversion to decimal form 
can then take place in the teleprinter. 

The principle of the method used to obtain successive decimal digits is 
to multiply the number (which is assumed to be positive and less than unity) 
repeatedly by ten and to remove the integral part each time. If the number is 
expressed as a decimal fraction this method clearly isolates the successive 
digits, beginning with the most s ignificant. The same is true if the number is 

*A hole in the tape represents the binary digit 1, except in the case of 
the most significant digit, where a "1" is represented by the absence of a 
hole. This is done in order to avoid having to represent the number 0 by 
blank tape. 
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expressed as a binary fraction (the multiplication being by ten in its binary 
form, that is, by the binary number 1010), except that the digits are then ob­
tained in the form of the corresponding binary numbers. When this method 
is programmed for the EDSAC it is necessary, in order to avoid using num­
bers outside the range -1s;:x<1, to multiply by 10/16 instead of by 10 and to 
take the four digits which come immediately after the binary point. The re­
mainder is shifted four places to the left before a further multiplication is 
performed. 

1-10 Checking facilities. 

The EDSAC was designed with the understanding that .the programmer 
would incorporate in his program such mathematical checks as he might con­
sider necessary , or arrange for them to be carried out afterwards. No special 
checking devices are therefore provided inside the machine. It is, however, 
desirable that there should be some means available whereby the programmer 
can verify that a number computed and held in the store of the machine has 
been correctly transferred to the teleprinter. For this reason there is an 
order (the F order) which enables the number transferred to the teleprinter 
by the last output order to be read back into the store. By making use of this 
order it is possible to arrange that an indicating symbol, for example a ques­
tion mark, shall be printed if the number has been incorrectly transferred to 
the teleprinter. Examples of how this is done will be found in the output sub­
routines given in detail in Part III of this book. It is of course possible that 
even though the correct number has been transferred to the teleprinter a 
wrong character will be printed. The design of the Creed teleprinters used 
in conjunction with the ED SAC is such, however, that the possibility of an 
error occurring beyond the point at which the check is made is remote. 



CHAPTER 2 

INPUT OF ORDERS 

2-1 Initial orders. 

This chapter is concerned with the process by which orders are read 
from the tape and placed in the store of the EDSAC. The only way in which 
a symbol punched on the tape can be read is by the operation of an I order. 
To enable a program tape to be read, therefore, means are provided whereby 
a short group of orders, known as the "initial orders" or sometimes as the 
"initial input routine," can be placed in the store independently of the input 
mechanism. These orders are wired in binary form on a set of stepping 
switches (uniselectors), and are automatically transferred to the store (and 
called into action) when the starting button is pressed. The initial orders are 
needed only while the program tape is being read, and the space they occupy 
in the store may be used again for other purposes during the course of the 
calculation. 

An order is punched exactly as it is written, the address being in decimal 
form. The initial orders must therefore be such as to convert the address to 
binary form, to assemble the complete order, and to place it in the correct 
storage location. It is important to distinguish between the coded form in 
which orders are punched on the tape and that in which they appear in the store, 
and to realize that the relation between these two forms is determined solely 
by the initial orders. By making the two forms more similar (for example, by 
punching the address in the scale of 8 or 16) it would be possible to simplify 
the initial orders. There would, however, be no advantage in doing this and it 
would mean that more work would be left to the programmer, who would have 
to carry out tedious conversions when constructing the program. It is highly 
desirable that the machine itself should carry out as much of this work as pos­
sible; the chance of error is then reduced and the programmer is left free to 
concentrate his attention on the more essential aspects of the program. 

The choice of the initial orders, and thus of the form in which orders 
are punched, is therefore a matter for careful consideration, since upon it de­
pends the ease with which all programs are constructed. Once the choice has 
been made, a library formed, and several large jobs begun, a change in the 
form of writing and punching orders would entail a big reorganization. The 
form used with the EDSAC was changed in September 1949, after only a few 
simple programs had been run; now, however, any substantial change would 
be practically out of the question, even if it were desired (see reference 10). 

The form in which orders referring to specific storage locations are 
punched has already been described. First, there is a letter indicating the 
function of the order, tl1en the address in its decimal form, and finally a code 
letter which is either F or D according as the address refers to a short or a 
long location. It should be noted that in the address zeros are not punched in 
front of the first significant digit, for example A 50 F is puncheq, not A 0050 F; 
if the order referred to the number in storage location 0 it would be punched 
A F. 

15 
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The action of the initial orders can now be described. When an order 
such as A 50 F or A F is being transferred from the tape to the store, the 
first character to be read is the function letter, and the corresponding binary 
number is placed by the initial orders in a suitable location for temporary 
storage. The next character may be either a digit of the address or a code 
letter F or D. These can be distinguished by the fact that F and D correspond 
to binary numbers which are greater than ten. The character just read is 
therefore tested by having 10-1/2 subtracted from it; if the result is negative 
the character must represent a digit of the address, otherwise it represents 
a code letter. As the successive digits are read the address is built up pro­
gressively in binary form. When the code letter is encountered the address 
and the number representing the function letter are added together. If the 
code letter is F the result represents the complete order and is transferred 
to the store as it stands. If the code letter is D, 2-lti is added to the result 
before it is transferred to the store. 

In addition to the code letters F and D so far referred to, there are 
thirteen other code letters which may be used to termin::tte an order. The ob­
ject of these code letters is to facilitate the use of subroutines in ways which 
will be described later. Each causes the contents of a certain storage location 
to be added to the order before it is transferred to the store. The complete 
list of code letters is as follows: 

Code 
letter 

F 
e 
D 
¢> 
H 
N 
M 
Ll 
L 
X 
G 
A 
B 
c 
v 

Location whose content 
is added to the order 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 

Number added 

zero 
variable 
2- 15 

variable 

Storage location 41 contains zero, so that the code letter F leaves the order 
unchanged. Storage location 43 contains 2-16 , so that code letter D causes z- 16 

to be added to the order. These two code letters thus have the effect described 
earlier. 

All the above code letters indicate the end of an order, and cause it to be 
placed in its correct location in the store. The code letter rr causes 2- 16 to 
be added to the order (in this it resembles D) but must be followed by another 
code letter to indicate the end of the order. It is thus possible by using rr to 
cause both 2- 16 and some other number to be added to the order before it is 
put away in the store. 
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2-2 Pseudo-orders. 

A converse of the fact that orders are represented in the machine by 
numbers is that numbers may be represented outside the machine by " pseudo­
orders," that is, tape entries which are punched in the same form as orders 
but which are merely intended to be used as constants and are never to be 
obeyed as orders. For example, the pseudo-order P n F is equivalent to the 
number n · 2- 15 , since P corresponds to zero (see Appendix A); P n D is equiv­
alent to (n+1/2). 2-15 , and X F (where X stands for any letter) is equivalent to 
x · n-4 , where x is the numerical equivalent of X. This is often a convenient 
way of putting constants into the machine. It should also be noted that genuine 
orders which are obeyed at one point in a program may also be used as con­
stants in other parts of the program. 

When each order has been built up by the initial orders it is transferred 
to its correct location in the store. The particular order in the initial input 
routine which causes this transfer to take place will be referred to in what 
follows as "the transfer order." The address specified in the transfer order 
is increased by unity each time an order is placed in the sto!'e, so that succes­
sive orders are placed in successive storage locations. 

2-3 Examples. 

The following examples show orders and pseudo-orders as they are 
punched and in the binary form in which they are held in the store. 

Punched 
on tape Held in store 

rFunction 
_A 

Long/ short1 
letter Address digit 

A 6 F ~0 0 0 0 0 0 0 0 1 1 0 0 
A 6 D 1.1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 
T D - 0.0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 
p 6 F 0.0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
p F - 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

If storage location 45 contains the number 80, 

T 6 H 0.0 1 0 1 0 0 0 0 1 0 1 0 1 1 0 0 

If it is desired to modify an order by means of a code letter other than D and 
at the same time to make the order refer to a long storage location this can 
be done by punching 1r immediately before the code letter. Thus 

T 61rH 0.0 1 0 1 0 0 0 0 1 0 1 0 1 1 0 1 

2-4 Control combinations . 

Among the orders on the tape are punched groups of symbols called 
"control combinations." These are distinguis hed from orders by the initia l 
input routine; they are not placed permanently in the store but dir ect the man­
ner in which the input process is carried out. For example, the control com­
bination T m K, where m is an integer punched in decimal form like the address 
of an order, causes the address in the transfer order to be replaced by m, so 
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that the next order is placed in storage location m regardless of where the 
previous order was placed, Succeeding orders go into storage locations m+1, 
m+2, etc. For example, suppose that it is required to place the pseudo-orders 
P 5 F and P 10 F in storage locations 45 and 46, and then to place a sequence 
of orders in storage locations 100, 101, etc. The following will then be punched 
on the tape in front of the orders: 

T 45 K 
P 5 F 
P 10 F 
T 100 K 

The control combinations in most common use are given below. A fur­
ther list of control combinations is given in Appendix C. The initial orders 
themselves, together with notes on their operation, are given in Appendix B. 

TmK 

GK 

TZ 

E mKP F 

E 25 K T m H 

this causes the next order on the tape to be placed in 
storage location m 

this causes the address in the transfer order to be 
copied into 42, which corresponds to the code 
letter 8 

this causes the address held in 42 (m, say) to replace 
that in the transfer order, so that the next order is 
sent to storage location m. 

this stops the reading of orders, and causes control 
to be transferred to storage location m with the 
accumulator cleared 

this causes the next order on the tape to be placed in 
storage location m+h, where h · 2- 15 is the number 
in 45. H and 45 may be replaced by any other code 
letter and the associated storage location. 

2-5 Starting the program. 

The first few inches of a program tape are always left blank and the 
tape is inserted into the EDSAC tape reader with the reading head somewhere 
on the blank portion. It is not necessary to set the first row of holes under 
the reading head because the initial orders are designed to have the property 
of ignoring blank tape, in the sense that they do not erase anything of impor­
tance from the store when it is read. It is, however, necessary to punch a 
control combination at the end of the blank tape and immediately in front of 
the orders. The usual control combination is P K T m K, and in this case 
orders go into the store starting at storage location m. If the control combina­
tion P F is used orders will go into 45, 46, etc.; P Z will cause them to go 
into 44, 45, etc. The action of the initial orders when reading blank tape is 
described in detail in Appendix B. 

The control combination E a K P F is punched at the end of the orders 
to cause control to be transferred to a, which is supposed to contain the first 
order of the program. The initial orders may be called in again, if required, 
to read further orders from the tape by transferring control to storage loca­
tion 25. The accumulator need not be empty, but the first combination to be 
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read from the tape should be a control combination which will replace the 
transfer order, for example T n K. If it is intended to use the initial orders 
again in this way care must be taken to see that they are not written over by 
numbers during the course of the program. If the initial orders have been 
written over they may be replaced (after the machine has stopped) by press­
ing the starting button again; the contents of other parts of the store will be 
left undisturbed. 

2-6 Use of code letters. 

The code letter (} has a special use in connection with subroutines. In 
any subroutine it will be found that the addresses specified in some of the 
orders are those of other orders or pseudo-orders in the same subroutine, 
and therefore depend on the location in the store of the subroutine as a whole. 
In order to illustrate this, a subroutine for replacing the number in storage 
location 0 by its modulus is given below. It is shown with its first order 
placed in storage location m and it will be seen that the address specified in 
the second order depends on m. 

m S F 
m+1 G m+3 F 
m+2 T F 
m+3 T 1 F 

Subroutines punched in this way would not be suitable for forming into a library, 
since each could be used in one place in the store only. This difficulty is over­
come ~y punching the subroutine in the following form: 

G K 
S F 
G 3 0 
T F 
T 1 F 

The control combination G K at the head of this subroutine causes the address 
specified in the transfer order, m say, to be recorded in storage location 42. 
The orders of the subroutine are then placed in the store in order, the first 
going into storage location m. When the second order is taken in, the code 
letter (} which terminates it causes the number m in storage location 42 to be 
added to its address. The order then refer s to the correct location within the 
subroutine. It should be clearly understood that the modification of an address 
brought about by the action of a code letter takes place at the time that the 
order is being transferred from the tape to the store, and not at the time that 
it is executed. 

The use of the system described in the last paragraph enables l.ibrary 
subroutines to be stored in the form of short lengths of punched tape which 
can be copied mechanically on to a program tape. A description of the equip­
ment used for this purpose is given in Chapter 6. 

The main purpose of the code letters, other than (}, is to make it pos­
sible for parameters to be incorporated in subroutines during input. This 
matter will be taken up more fully in section 3-3, but a simple example will 
be given here. The following subroutine is designed to replace the number in 
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storage location h by its modulus, where 2-15 h is the number in storage loca­
tion 45. Were it not too trivial to warrant such treatment, this subroutine 
might be contained in the library. 

T Z 
S H 
G 3 8 
T H 
T F 

If this subroutine were in the library and if a programmer wished to use it 
for replacing the number in storage location 150 by its modulus, he would 
copy it mechanically from the library tape on to his program tape, with the 
following punched immediately in front: 

G K 
T 45 K 
P 150 F 

Note that the subroutine starts with the control combination T Z, which re­
stores the address of the transfer order to the value it ha'd before the pseudo­
order P 150 F was placed in 45. 

2-7 Constants. 

When the initial orders have finished their work the following constants 
are left in the store: 

storage location 2 
storage location 3 

P 1 F 
U 2 F 

These constants are used by most library subroutines and it is important that 
they should be left undisturbed during the program. 

2-8 Notation. 

The following abbreviations will be used in this book. 

n 

nD 

C(n) 
C(nD) 

C(Acc.) 
C(R) 
nH 

short storage location having serial number n (the alterna­
tives nF or S(n) may sometimes be necessary to avoid 
confusion) 

long storage location formed by combining short storage 
locations nand n+1, n being even (the alternative n' was 
..~sed in earlier literature) 

content of storage location n 
content of storage location nD (the alternative C(n') was 

used in earlier literature) 
content of the accumulator 
content of the multiplier register 
storage location (n+h) where h · 2- 15 is the number in 45 

during input of the part of the program concernedj alterna­
tively long storage location (n+h)D if (h+ 0.5) · 2- 15 is in 
45 during input 
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D7TH long storage location (n+h)D where h · 2-15 is the number 

C(nH) 
C(n7TH) 

in 45 during input of the part of the program concerned 
content of nH 
content of n7TH 
(In the last four cases, H and 45 may be replaced by any 

other code letter and its associated storage location) 
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CHAPTER 3 

SUBROUTINES AND PARAMETERS 

3-1 Open subroutines. 

The simplest form of subroutine consists of a sequence of orders which 
can be incorporated as it stands into a program. When the last order of the 
subroutine has been executed the machine proceeds to execute the order in 
the program which immediately follows. This type of subroutine is called an 
"open" subroutine. 

3-2 Closed subroutines. 

A "closed" subroutine is one which is called into use by a special group 
of orders incorporated in the master routine or main program. It is designed 
so that when its task is finished it returns control to the master routine at a 
point immediately following that from which it was called in. The subroutine 
itself may be placed anywhere in the store. There are various methods of 
arranging the operation of entering a closed subroutine and returning to the 
master routine after the operation of the subroutine has been completed. The 
method chosen for use with the EDSAC is given below; n is the address of the 
first order of the subroutine. 

!'lumber of 
storage 
location 

m 

Order 

A m F 

G n F 

Explanation 
(Accumulator contains zero at this point) 

adds number representing A m F into the 
accumulator (this is negative, since A 
corresponds to -4/16) 

transfers control to n, since number in 
the accumulator is negative 

The orders in the subroutine are as follows: 

n 

n+P+1 
ll+P+2 

G K 

A 3 F 

T P+2 6 

~ 
Z F 

control combination; puts the value of n 
in 42 

adds U 2 F to contents of accumulator 
(A m F) forming E m+2 F (link order) 
since A=:-4/16, U=7/16, whence 
A+ U=:8/16=E 

plants link order in (n+P+2) (code letter 
6 causes C(42), i.e. n, to be added to 
address during input) 

operational orders of the subroutine, p 
in number. These leave the accumula­
tor empty 

becomes E m+2 F (link order) as result 
of order in (n+1) 

Any order may be punched on the tape for the last order of the subroutine, 
since it is overwritten by the link order. Often Z F or P F is used and this 

22 
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has the advantage that if by reason of an error the link order is not planted in 
the correct position the machine will stop and by the place of its stopping give 
some indication of what is wrong. Orders which are intended to be changed 
during the program are usually written in brackets. 

3-3 Preset parameters. 

It is desirable to be able to make library subroutines of as wide a utility 
as possible in order that the total bulk of the library may be kept small. This 
may be done by including in a subroutine one or more parameters which may 
be given different values on different occasions. For example, 04 (see Part II) 
is a division subroutine which divides the contents of a certain storage location 
hD by the contents of the accumulator, where h is a parameter which may be 
set in advance. Parameters of this kind are called preset parameters and it 
is arranged that they are set to their correct values during input by making 
use of the facilities described in Chapter 2 under the heading Code Letters. 
In the case of the division subroutine mentioned, the following combinations 
must be punched on the tape in front of the subroutine: 

G K 
T 45 K 
P h D 

The subroutine itself is headed by the control combination T Z instead of the usual 
G K. The effect is that the number corresponding to PhD (i.e., h " 2- 15 + 2-16 ) 

goes into storage location 45 and is therefore added to the address specified in 
any order in the subroutine which is terminated with the code letter H. In this 
way the numerical value of the constant h can be incorporated in the subroutine 
during input. When a subroutine has a number of parameters they are punched 
in order after the control combination G K T 45 K; they then go into storage 
locations 45, 46, 17, etc., and are added to the addresses specified in orders 
terminated by the code letters H, N, M, etc, respectively. 

3-4 Program parameters. 

The values of preset parameters are incorporated in a subroutine during 
the process of input and are therefore fixed for the whole of a program. If it 
is desired to include in a subroutine a parameter which can be given different 
numerical values at different points in the same program, then a different 
method must be used. Such a parameter is called a program parameter and 
is normally placed immediately aft'er the orders which call in the subroutine. 
An example is to be found in subroutine P 1 which prints the positive number 
in OD to n places of decimals. This subroutine, assumed to have its first 
order in p, is called in by the following group of orders (the accumulator con­
taining zero at this point): 

m AmF 

GpF 

P n F 

adds number corresponding to A m F into 
the accumulator 

transfers control to p (that is, to the be­
ginning of the subroutine), since the num­
ber in the accumulator is negative 

program parameter specifying n 

program parameter specifying n 



24 ELECTRONIC DIGITAL COMPUTER 

The subroutine is so constructed that an order A m+2 F is formed and planted 
in a suitable position within the subroutine. When this order is obeyed it ex­
tracts the program parameter from the master routine and enables it to be 
used by the subroutine. The link order formed is E m+3 F, instead of E m+2 F 
as described in Section 3-2, since it must return control to the location which 
follows immediately after that containing the program parameter. The actual 
orders used in P1 are as follows: 

G 

0 A 

1 u 

2 s 

3 T 
4 H 
5 (P 

16 
17 (E 

18 u 
19 1 
2C M 

K 

18 9 

17 9 

20 9 

5 9 
1.9 9 

F) 

J 
F) 

3 n 1 

control combination; puts p in 42 during 
input. Subsequent orders can therefore 
be numbered relative to the next order 
as zero 

adds U 3 F to C(Acc) (which is A m F as 
in all closed subroutines on entry) form­
ing E m+3 9, the required link order 

plants link order in 179 (i.e., in p.1.17) and 
leaves E m+3 F in the accumulator 

subtracts M 1 F from C(Acc) forming 
S m+2 F (since E = 3/16, M = -&/16, 
whence E-M = 12/16 = S). 

plants S m+2 F in 59 
first operational order of subroutine 
becomes S m+2 F as result of order in 39 

other operational orders of subroutine 

becomes link order E m+3 F as result of 
order in 19 

pseudo-orders forming constants required 
in the operation of the subroutine. 



CHAPTER 4 

LffiRARY SUBROUTINES AND THEffi USE IN CONSTRUCTING PROGRAMS 

4-1 Library catalo~. 

The library catalog used in the Laboratory is drawn up in two sections. 
One gives a concise specification of the purpose of each subroutine together 
with sufficient information to enable a programmer to make use of it; this in­
cludes information about the operating time and storage space occupied. The 
second section gives the orders of each subroutine in full. The catalog is con­
tained in loose leaf books so that new sheets can be inserted as new subrou­
tines are added to the library. A condensed version of the catalog is given in 
Parts II and III of this report: Part II consists of specifications of all sub­
routines now in the library except for some which are obsolete. Most of these 
specifications are given in full but an abbreviated version only is given in the 
case of some subroutines which can be regarded as variants of others that 
are specified completely. Part III contains full program sheets for about half 
the total number of subroutines in the library and includes all those which are 
thought to contain points of special interest. 

Although much labor can be saved by making use of the library in its 
present form, it is still in many respects incomplete, and new subroutines 
are continually being added. In particular, it is hoped that subroutines for 
performing the following calculations will shortly be included: multilength 
arithmetic, calculation of hyperbolic functions, solution of algebraic equations, 
etc. 

It will be found in a number of cases that there are two or more sub­
routines which perform very similar operations. Usually they differ in time 
of operation and in storage space occupied. Normally the one with the short­
est operating time would be chosen for any particular application, but if the 
program occupies nearly all the store, then storage space may become the 
major consideration. Time of operation is of great importance only if the 
subroutine is called in many times during the program, thus consuming a 
large proportion of the total time. 

Subroutines may also differ in numerical accuracy and in the number of 
parameters which may be varied to suit particular applications. If a subrou­
tine has many parameters it is often useful to have a separate subroutine to 
deal with any case that commonly arises, since a subroutine with fewer param­
eters is shorter and simpler to use. 

4-2 Input and output subroutines . 

All input subroutines read numbers punched on the tape in the scale of 
ten, convert them to the scale of two, and place them in the store. Some sub­
routines read a single number only on each occasion they are called in, while 
others read a series of numbers and place them in consecutive locations in 
.the store. The subroutines may be further classified into those which read 
decimal fractions from the tape and those which read integersf in the latter 
case, when an integer n is read from the tape the number n·2- 6 or n-2-34 is 
put into the store according as short or long numbers are being used. The 

25 
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conversion of decimal fractions is slightly simpler if the least significant 
digit is read first and subroutines R5 and R7 are designed in this way. The 
number tape can, however, be punched in the ordinary way with the most sig­
nificant digit first and reversed during the process of copying onto the final 
tape. 

Many subroutines contain numbers as well as orders. Short numbers 
are best put in as pseudo-orders but long numbers may involve the use of an 
input subroutine. In some cases, library subroutine R2 is included in such a 
way that it is overwritten when the numbers have been taken in. Since, how­
ever, several subroutines in a program may need long numbers it is now com­
mon practice to draw up subroutines on the assumption that R9 has first been 
put into the store. R9 is a modified form of R2 which allows the input of long 
integers during input of orders. It is always placed in locations 56 to 70 in­
clusive. 

When a subroutine contains only one or two long constants, an alterna­
tive to the use of an input subroutine is to put the constants in as two short 
numbers. A difficulty arises, however, because there is an unused digit be­
tween each two short numbers (the "sandwich digit"). The method can only 
be used, therefore, to put in a number which has a zero in the 17th position 
after the binary point. This is not a serious limitation, since either the num­
ber itself or its complement is of this form unless it is an odd multiple of 
2-l?. The long storage location intended to receive the constant must first 
be cleared (to make sure that the sandwich digit is zero), and the two short 
numbers planted one after the other. This method of putting in long numbers 
is not often used now but examples will be found in Al and P7. 

The output subroutines convert numbers in the store to the scale of ten 
and cause them to be printed. Again they may be divided into those which deal 
with decimal fractions and those which deal with integers (some of the latter 
suppress nonsignificant zeros). Some output subroutines print the numbers 
in a special layout; in other cases the output subroutine prints a single number 
only and it is left to the programmer to arrange his own layout. Most of the 
later output subroutines make use of the F order to verify that.the digits have 
been correctly printed. If this check fails then some specia~ indication is 
given, usually an extra line-feed. 

By the use of suitable scale factors the input and output subroutines can 
be made to handle numbers having the binary point in positions other than 
those mentioned above. 

4-3 Division subroutines. 

The order code of the EDSAC does not include an order for division, 
which must therefore be carried out by means of a division subroutine, sev­
eral of which are available in the library. One of these, 06, uses an 
iterative formula and is arranged to give the greatest possible accuracy. 
Others use a repetitive cycle to divide directly and contain fewer orders than 
06. Errors can build up in this process, however, and these subroutines are 
not as accurate as 06, although the result is usually reliable to about as many 
figures as exist in the dividend. 
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4-4 Trigonometrical and other functions . 

When values of a trigonometrica l or similar function are required for 
arbitrary values of the argument it is usually better to use a subroutine which 
calculates them from first principles rather than to place a table in the store 
and to interpolate from it. In many cases it is quickest and -simplest to use a 
power s eries. In the earlier subroutines Taylor series were used, but later 
subroutines use series based on Tchebycheff polynomials since in this way 
the same accuracy can be obtained with fewer terms. An example of this will 
be found in T7. 

Sometimes repetitive methods based on very simple formulas and need­
ing very few orders are available; they are, however, usually rather slow. 
Examples are to be found in subroutines E2 and Sl. In the latter case the re­
quired answer is built up digit by digit. 

When a series of sines or cosines is required with equal increments of 
the argument, subroutines T5 or T6, which are based on a recurrence formula, 
may be useful. This situation occurs when a differential equation involving a 
sine or cosine of the independent variable is being solved. 

For most trigonometrical subroutines the angle corresponding to the 
argument must be in the first quadrant. One routine (T4), however , can be 
used for arguments of any magnitude. 

An example is given in Section 7-1 of a program built up from the sub­
routines already discussed. The program ca.uses a series of numbers x (< 1) 
punched on the tape to be read and the quantities e - sin x to be computed and 
printed. 

4-5 Quadrature . 

Q1, Q2, and Q3 are subroutines for computing definite integrals. An 
auxiliary subroutine for calculating values of the function to be integrated 
must be constructed; this is called in as required by the integration subroutine. 
Q2 and Q3 are based on Gauss' 5- point and 6-point integration formulas and 
one of these is ordinarily the best subroutine to use. The usual objection to 
Gauss' formulas , namely that the function has to be computed for awkward 
values of the argument, is of no account when using an automatic machine (an 
illustration of the different considerations which apply when selecting methods 
for automatic as compared with hand computing). However , in some cases, 
for example if the function to be integrated is obtained by integrating a differ ­
ential equation, a formula which uses equally spaced ordinates may be more 
suitable. In these cases Q1, which is based on Simpson's rule, may be used. 

A simple example of the use of such a subroutine will be found in Sec­
tion 7- 2, which gives a program for the calculation of 1T from the formula 

~rr = 1~1 + x 2)-1 dx. 

4-6 Assembly subroutines. 

The example given in Section 7-1 illustrates two alternative methods of 
assembling a program. In each of these the programmer has to decide where 
the master routine and each subroutine are to go in the store and to insert 
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the correct addresses in the orders in the master routine which call in the 
subroutines. The object of an assembly subroutine is to relieve the program­
mer of these and other mechanical tasks. 

4-61 Principle of operation of assembly subroutine Ml. Any complete 
program contains one or more of the following components: 

1. Sequenc~s of numbers 
2. A master routine 
3. Closed subroutines of two kinds: 

(a) those made specially for the program 
(b) those taken from the library. 

When the subroutine M1 is used, the numbers in each sequence are numbered 
0, 1, 2, ... , and are distinguished in the master routine and in the first group 
of subroutines by code letters (H, N, M, •.. ) punched after each address, one 
code letter being used for each number sequence. The closed subroutines are 
numbered 1, 2, 3, etc., and are called in by orders A m1 e, G 1 ¢;A m 2 e, 
G 2 ¢; etc., where m1, m2, etc. are the addresses of the storage locations in 
the master routine from which the subroutines are called ln. 

M1 is first punched on the tape and is followed by two parameters P r F 
and T s K; r·2- 15 goes into 44 and its meaning will appear later. The compo­
nents of the program are then punched in the above order, each being preceded 
by a control combination; the last component is iollowed by a control combina­
tion which starts the program. The components eventually go into the store 
head-to-tail in the order in which they are punched. Suppose that the first num­
bers of the various number sequences (H, N, M, ... )go into locations n1, nz, ... , 
etc., that the first order of the master routine goes into m, and that the first 
orders of the closed subroutines go into s1, s 2 , s3 , etc. 

M1 is called in by the control combination punched at the head of each 
component. It causes a record to be made of the location into which the first 
order or pseudo-order of the component is about to go, in the following form: 

1. When the number sequences go into the store, pseudo-orders P n1 F, 
P n2 F, etc., go into 45, 46, etc. 

2. When the master routine goes into the store, the order E m F goes 
into r. 

3. When the closed subroutines go into the store, orders G s 1 F, G s2 F, 
etc., go into (r+1), (r+2), etc. 

M1 then returns control to the initial orders, and the orders or pseudo-orders 
which follow on the tape are read in the usual manner. 

The control combination E 25 K E ¢ P F is punched at the end of the tape. 
This sends control to r, where there is an E order which sends control to the 
beginning of the program. When the pth subroutine is called in, control passes 
to (r+p), where there is a Gorder which sends it to the beginning of the correct 
subroutine. Orders in the master routine and in the subroutines which refer to 
the various number sequences (distinguished by different code letters) have 
their addresses corrected in the usual way by the addition of C(45), C(46), etc. 

Normally, M1 causes the first order or pseudo-order of each component 
to be placed in an even location. This means that here and there short storage 
locations will be left unused. If this is considered undesirable, M1 may be 
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called in in such a way that the first order or pseudo-order of the next com­
ponent goes into the next available location, whether it be odd or even. 

4-62 Directions for use of Ml. The method of use of Ml is best ex­
plained by giving a schedule for the punching of the tape. Two number se­
quences and two subroutines are shown, but others may be added. 

Notation: a location of first order of Ml 
r location of reference order for master routine 
s location of first order or pseudo-order to be placed in 

the store 

Tape 

PKTaK 
Assembly subroutine Ml 

PrF J 
TsK 

space 

PZGK 
EaKTF 
number sequence (H) 

space 

PZGK 
EaKTF 
number sequence (N) 

space 

PZGK 
T(a+lO)K T ¢ 

E a KIF 
Master routine 

space 

PZGK 
EaKPF 
subroutine no 1 

space 

PZGK 
EaKPF 
subroutine no 2 
E 25 K 
E¢PF 

Notes: 
J 

Notes 

copied from library tape 

parameters 

calls in Ml. which places P n 1 F in 45 

calls in Ml, which places P n2 F in 46 

sets Ml ready to pl,ace a reference 
order in r 

calls in Ml, which places G s 1 F in r+l 

calls in Ml, which places G s2 F in r+2 

sends control to master routine via r 

1. If the combination E a K T D is punched in front of the first number 
sequence instead of E a K T F, P n1 D will be placed in 45 instead of P n1 F 
and similarly for the other number sequences. 
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2. If it is desired to place a component of the program in the next avail­
able storage location regardless of whether it is odd or even, Ml should be 
called in by E (a+l) K, instead of E a K. 

3. If storage space is short, M1 may be placed where it will be over­
written by the last subroutine of the program. 

4. Where spaces are shown on the tape at least two blank rows must be 
left. If desired, the spaces may be omitted altogether, in which case the com­
bination P Z should also be omitted. 

5. If it is desired to leave a gap in front of any component, the combina­
tion G n K should be punched instead of the G K immediately before E a K; n 
storage locations will be left unused. 

6. If there are no number sequences, the control combination 
G K T(a+10) K T ¢ should follow directly after the parameter T s K. 

7. M1 makes the address of the transfer order equal to C(42) (increased 
by 1 if necessary); that is, it has a similar effect toT Z. Since it leaves the 
address of the transfer order equal to C(42) it need not be followed by G K. 

8. If the first number sequence is to go into the store immediately after 
M1 the parameter T s K should be T a+l6 K. 

9. The above proforma shows the normal way in which it is intended 
that Ml should be used. Various other possibilities will suggest themselves; 
for example, several E orders may be stored as reference orders in addition 
to the one used for the master routine. It is to be noted that if M1 is called 
in by the control combination E a K X q F, where X is any letter, the refer­
ence order manufactured and placed in the store will be (X+G) q F. 

As an example, the program for the computation of 
l I (1 + x2 r 1 dx 

given in Section 7-2 is given in Section 7-3 in a revised form making use of Ml. 

4-63 Principle of operation of assembly subroutine M2. This subroutine 
handles the input of subroutines in a similar manner to M1, but does not apply 
to number sequences. It requires fewer control combinations preceding sub­
routines than does Ml. M2 slightly modifies the initial orders and enables use 
to be made of the code letter S. Control combinations terminated by S operate 
as follows: 

Case (1). Control combinations with zero address. First the address 
specified in the transfer order (order 22) is copied into 42; this is the same 
effect as that of the control combination G K. Next, a reference order is 
stored, having the same address as that specified in the transfer order , and 
the same function letter as the control combination. Thus the control combina­
tion X S, when the transfer is T n F, will put P n Fin 42 and store the refer­
ence order X n F. 

Case (2). Control combinations with address 1. The address specified 
in the transfer order, if even, is left unchanged, and if odd, is increased by 1. 
Thereafter the effect is the same as in case (1). 

Reference orders are always stored by M2 immediately after itself. 
Thus if M2 commences in m, the reference orders are placed in (m+16), 
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(m+17), ... , etc. The parameter P (m+16) F is automatically placed in 44 when 
M2 is fed in, so that the code letter 41 will refer to the reference orders. For 
example, G 2 41 will switch control to the third reference order. 

For a normal closed subroutine the reference order will be a G order , 
switching control to the start of the subroutine. For the master routine an E 
order may be used to direct control to the beginning of the program. In spe­
cial cases other letters may be useful. 

M2 must be so placed in the store that room is left for the reference 
orders which follow it. The first fourteen orders of M2 may be written over 
by the last subroutine on the tape; the last two orders must remain undisturbed 
until the tape is read, otherwise the code letter rr will not be read correctly. 
The reference orders must remain throughou<: the program. 

Orders punched immediately after M2 will be placed in 45 onwards. 

4-64 Directions for use of M2. The following example shows how a 
tape could be arranged for a simple program consisting of two closed sub­
routiries and a master routine. 

Tape 

PKTaK 
subroutine M2 

blank tape 

] 
P Z T s K E S T 45 K ~ 
parameters for master 

routine 

TZ J master routine 

blank tape 

PZ l 
G 1ST 45 K 

J 
parameters for first 

subroutine 
first subroutine 

blank tape 

PZGS J second subroutine 

blank tape 

PZ J E 25 K E 41 P F 

Notes: 

1. m l Am, () J G 1 41 
mz A m2 () J G 2 41 

Notes 

places M2 in store, commencing at a , and 
puts P (a+16) F in 44 

places parameters in 45 onwards 

places master routine in s, sets C(42) to 
P s F and stores E s F in 41 

places parameters in 45 onwards, and sub­
routine in next even location following 
master routine. Places G order in j 41 

places subroutine in next location, odd or 
even. Places G order in 2 41 

switches control to 41, and thence to the 
beginning of the master routine. 

calls in first subroutine 

calls in second subroutine 
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2. Blank tape means at least two rows. If desired it may be omitted, in 
which case the following P Z should also be omitted. 

3. When preparing a subroutine (or master routine) with no preset pa­
rameters for use with M2, the G S (or E S) may be included at the head, in 
place of G K. 

4. Initial orders 27 and 28 are altered by M2. 

4-7 Integration of differential equations. 

There are in the library four subroutines for integrating ordinary dif­
ferential equations (not necessarily linear) by step-by-step processes. G3 
and G4 enable second-order differential equations with the first derivative ab­
sent to be integrated; they are based on conventional methods using difference 
formulas in which use is made in each interval of values of the function calcu­
lated in previous intervals. They have the disadvantage that special methods 
are needed for starting the integration. 

Gl and G2 are subroutines for integrating sets of simultaneous first­
order differential equations using a modified Runge-Kutta method (ref. 12) 
which is described below. This method has the advantage that a special start­
ing procedure is not necessary and, since any differential equation or set of 
differential equations can be reduced to a system of first-order equations, it 
is of wide utility. In cases where both are applicable it is, however, somewhat 
slower than the method used in G3 and G4. 

4-71 Library subroutines Gl and G2. The modified Runge Kutta process. 
This process handles a set of simultaneous first-order ordinary differential 
equations, in which each derivative is expressed explicitly in terms of the 
variables 

YJ. = fl(yl , Y2, ...... Yn), 

Y~ = f 2(Y1 • Yz ' ...... Yn), 

y;, = fn(Yl, Y2 , ...... Yn ). 

Any equation or set of equations must be expressed in this form before the 
process can be applied. For example, 

y" = -w2y 

may be written yl_ = wy2 ' 

Y2 = -wyl, 

where y1 = y and y2 = y' / w. 
The case in which the functions f involve the independent variable can 

be treated by the method described in Section 4-72. 
The subroutine Gl or G2 carries out one step of the integration each 

time it is called in. In doing so, it makes use of an auxiliary subroutine which 
evaluates the functions f 1 ... ~. The auxiliary subroutine must be provided 
for the individual problem. It is called into play four times during each step. 

The auxiliary subroutine is asked to provide the quantities hy ' multiplied 
by a suitable scale factor 2m, where h is the length of the interval, and m is 
chosen to be as high as possible without exceeding capacity. 



LIBRARY SUBROUTINES 33 

Apart from the 2n storage locations used to store y and 2mhy 1 , further 
n locations are used as working positions by the integration subroutine (to 
hold the quantities 2mq, see Section 4-73). The numbers left standing in these 
locations after the end of a step are 3 x 2m times the rounding-off errors of 
the quantities y; they are taken into account during the following step, and 
serve to prevent the rapid accumulation of rounding-off errors. As a result, 
the effective numerical accuracy is m digits more than the capacity of the 
storage locations. At the beginning of a range these working positions must 
be cleared, otherwise the integration routine will add spurious "corrections" 
to the variables. Apart from planting the initial values of the variables, this 
is the only preparation required before starting an integration. 

The truncation error in one step is of order h5 • Ordinarily it is about 
10- 2 h5 , so that maximum accuracy is obtained with h = 2-7 or ~8 for long 
numbers , and h = 2-3 or 2-4 for short numbers. If the functions are very 
sensitive to variations in y, or if the number of equations is very large, small­
er steps will probably be necessary. 

4-72 The independent variable. If the independent variable occurs in 
the functions f, it may be obtained by integrating the equation X 1 = 1. x is 
treated as an additional dependent variable, for which the auxiliary subroutine 
has to provide the quantity 2mhx 1 = :f'h. In point of fact the latter may be 
planted at the beginning of the integration and left there, so that the auxiliary 
subroutine is relieved of the task. If the independent variable does not appear 
in any of the f's but is merely wanted for indication purposes, it is quicker to 
use a simple counter in the master routine. 

When x is generated by integrating x 1 = 1, the values which it assumes 
during the four applications of the auxiliary subroutine within one step are 
xo, (xo+~h), (xo +~ h), and (Xo+h) respectively, where x 0 is the beginning of the 
step. This ha.s two implications. First, if time is of great importance, x may 
be generated by using a binary switch in the auxiliary subroutine, so that ~ h i8 
added every other time the subroutine is used; x may then be used in calculat­
ing the f's, but does not require the introduction of an additional "dependent" 
variable. Second, if the f's involve a function of x which is tabulated at equal 
intervals, it will only be necessary to employ the tabulated values, or values 
interpolated at simple fractions of the tabular interval. 

In the case of Gl, if either of the suggestions in the preceding paragraph 
is carried out, Gl should be placed in the upper half of the store to obtain maxi­
mum accuracy (the ideal position is 386 onwards). This is because one of the 
orders forms part of a constant which thus depends slightly on the location of 
the routine. In normal use the effect is quite negligible, but it does mean that 
the last value of x in each step may differ from (Xo+h) by at most 2-03 • 

If h cannot be expressed exactly in binary form, there is a numerical 
advantage in generating x by integrating X 1 = 1. Owing to the high digital ac­
curacy afforded by the "bridging" values of 2mq which are carried over from 
one step to the next, the accumulation of rounding-off errors in x occurs much 
less rapidly than it would if x were obtained by the repeated addition of h. 

4-73 Definition of the process. The process is defined by the equations 
below. y iO is the value of the ith variable at the beginning of a step; Yi4 is 
its value at the end of the step. While the 2mk ip 's for one value of pare being 
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calculated by the auxiliary routine, the corresponding Y:ip and 2IIlq _ip (i = l. .. n) 
are stored. The quantities rip are only used in the formation of the corre­
sponding Yip and %p , and do not need to be carried over to the following value 
of p. Each r is rounded off to the same number of places as y. 

Yi4 and Qi4 become Yio and Qio for the following step. The scale factor 
2m employed in storing k and q is left out for simplicity. 

k iO = hfi (Yoo , Y1o , .... ) 

rn = (1/2)kio - wqiO 

Yn=YiO +ru 

Qn = q~'J + 3rn - (1/2)k ill 

kn = hfi (Yol, Yn , .•.. ) 

ri2 = (1 - Vi/2Hk n - Qn) 

Yi2 = Yil + r i2 

Qi2 = Qil + 3ri2 - (1 - Vi72)k il 

k i2 = hfi (Yo2 , Yl2• .. . . ) 

r i3 = (1 + Vi72Hk i2 - qd 

Y i3 = Y i2 + r i3 

Qi3 = Qi2 + 3r i3 - (1 + vl/2)k i2 

ki3 = hf dYo3 , y -._3 , .• . . ) 

r i4 = 1/6(ki3 - 2q i3 ) 

Yi4 = Yi3 + r i4 

Qi4 = Qi3 + 3ri4 - (1/2)ki3 

i = 1 .. . . n 

The coefficient w appearing in the expression for r n is not critical. The 
best value is actually 1, but G1 and G2 use the value 1/2, as it simplifies 
the program. 

An example of the use of these subroutines is given in Section 7-6. 

4-8 Processes. Interpretive subroutines. 

There are in the library a number of subroutines which, when called in, 
execute series of operations according to sets of parameters in the store. 
The codes by which these parameters are interpreted are determined by the 
design of the routines themselves, and are arranged to simplify the coding of 
such operations as the handling of complex numbers and numbers in floating 
point form (see below). 

These subroutines are usually called in by the method used for the closed 
type, the parameters following the orders which call in the routine. The rou­
tines do, however, form a distinct class, and have been labelled " interpretive." 
Such a routine is defined as one which executes an operation defined by each 
parameter according to a code which is independent of the position of the pa­
rameter in the series. Usually the series is of indefinite length, being termi­
nated by a special parameter. 
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Each parameter may be regarded as an "order," and thus the use of 
interpretive routines effectively extends the order code of the machine by in­
creasing the complexity of the operations which may be performed in response 
to a single "order." The resulting gain in expediency of programming is 
offset by an increase in the time required by the machine to carry out the cal­
culation, due .to the higher percentage of orders concerned purely with organiz­
ing the operations. 

4-81 Operations on complex numbers. Subroutines B1 and B2 are inter­
pretive subroutines which enable operations to be performed on complex num­
bers whose real and imaginary parts are stored in consecutive long storage 
locations. The orders which define operations on complex numbers are placed 
in the master routine directly after the orders used to call in the subroutine. 
By the use of these subroutines the processes of addition, subtraction, trans­
fer, and shifting may be carried out on complex numbers. Subroutine B2 will 
also carry out complex multiplication. The order code used is the normal 
order code of the EDSAC with certain small exceptions described fully in 
Part II. 

Further subroutines dealing with complex numbers are described in the 
next paragraph. 

4-82 Floating point subroutines. One difficulty which arises in pro­
gramming complicated problems is the control of the magnitudes of the num­
bers involved. With the binary point at the extreme left-hand end of the ac­
cumulator, repeated addition may cause the accumulator to overflow at the 
left-hand end and repeated multiplication may cause loss of significant figures 
at the right-hand end. To prevent this, it is necessary to place the number in 
a suitable digital position within the arithmetical unit. In complicated programs 
this may be difficult or impossible to estimate in advance. Subroutines have 
therefore been prepared that will automatically adjust the scale factors associ­
ated with particular numbers or groups of numbers. 

These subroutines carry out arithmetical operations with real or com­
plex numbers expressed in the "floating decimal" form a·10P, where I aj is 
restricted to lie between two limits such as 1 and 10. In this form it is pos­
sible to represent numbers having a wide range of values fairly accurately 
over the entire range. The digits representing the exponent and those repre­
senting the numerical part together form the digits of one long number~. (or two 
long numbers if a is complex). 

The main library subroutines dealing with numbers in floating decimal 
form consist of the following three groups. 

A1- A4 

A3 and A4 are two versions of a subroutine to carry out special arith­
metical operations (described in detail in the specification of A3 in Part II) on 
real numbers expressed in the following standard floating decimal form: 

X = X 0 ·10P, 

where X. is a seven decimal-digit number and p is an integer such that 

4>1Xoi ~0.4, 
512 > p ~ -512. 
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The two parts of the number X are packed into a single long storage location, 
ten digits being allocated to the signed exponent, p, and the remaining 24 to 
the numerical part, X0 • That is, in the store, X is represented by the number 
2-12 ·Xo + 2- 9·p. 

The subroutines unpack each number when it is required and place the 
numerical part and the exponent in separate long storage locations or " regis­
ters" ready for the special arithmetical operations to be performed. Similarly, 
answers are packed up and stored if they are not to be used again immediately. 
The special Read and Print subroutines A1 and A2 provide these packing facili­
ties for the input and output of data to be used by A3 and A4. In A1, p is further 
restricted to the range 256>p>O. 

A5- A8 

A5 and AS are similar to A3 and A4 but operate on complex numbers ex­
pressed in the following standard floating decimal form: 

Z = z0 ·10P = (X0 + iY0 )-lOP, 

where Xo and~ are seven decimal-digit numbers and pis an integer such 
that 

4>1 Yx6 + Y8iz.o.4, 
2048 > p 2. -2048 

Two long storage locations are used to hold one such complex number , the 
first 28 digits of each representing Xo and Yo, and the remaining total of 12 
being used for the exponent, p. That is, in the store, the number Z is repre­
sented by 2-2 ·Xo in rD and 2-2 ·Yo in (r+2)D, each rounded off to 28 binary 
places. The last 6 digits of each of these storage locations contain the most 
and least significant halves respectively of the 12-digit integer p, the left­
hand digit of which is treated as a sign digit. 

A6 and A 7 are special Read and Print routines for the input and output 
of complex data to be us ed by A5 and A8. In A6, pis further restricted to 
the range 2048>p2.0. 

A9- All 

All is an interpretive subroutine which performs the ar ithmetical opera­
tions of addition, subtraction, multiplication, and transfer on real numbers ex­
pressed in floating decimal form, in accor dance with a code of program param­
eters detailed in the specification in Part II. Each number is expressed in the 
form a·Hf and is represented in the store by the long or short number a·2- 11 + 

2- 6 p· . 
A9 and A10 provide for the input and output of data to be used by All. 
One other subroutine, K8, also uses floating point arithmetic for special 

operations on power series. These are described in Part II. 
Floating point subroutines help to preserve accuracy by retaining a fixed 

number of significant figures in the most advantageous position wit!lin the ma­
chine. They can, however, do nothing to prevent the inherent loss of accuracy 
which results from thP !1;\lbtraction of two nearly equal quantities. For example, 
in the subtraction 

3.214567 X 105 - 3.214032 X 105 = 0.000535 X 105, 

the difference is afterwards converted to standard form (that is, 0.535000 x 102 ), 
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before use in another calculation. The last three figures in this case are 
meaningless and the accumulation of such nonsignificant figures may still 
present a problem for the programmer. 
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Al - A8 were developed for the problem of locating zeros of arbitrary 
real or complex functions by the "root squaring" method (see Section 7-8). 
A9 - All are intended for more general use. 

4-83 Packing of orders used with interpretive subroutines. It often 
happens that the "orders'' used in connection with an interpretive subroutine 
are few in number and refer only to a limited number of addresses. This is 
especially so with vector operations, where a single address can be used to 
specify a complete vector or matrix, but it is by no means restricted to such 
cases. 

In such an event space may sometimes be saved by packing two or more 
orders into a single storage location. The associated interpretive subroutine 
must then also incorporate unpacking facilities. A special input subroutine 
must also be provided unless the orders used are translated into the form 
normally accepted by the initial orders - a laborious process if many orders 
are involved. 

No subroutines using this principle have yet been included in the library 
but a short account of one problem to which these methods have been applied 
will be found in Appendix D. 



CHAPTER 5 

PITFALLS 

Even a first-class computer will sometimes make a mistake (although 
he will not allow it to go undetected for long). In the same way a programmer 
will sometimes make a mistake in the master routine, in a subroutine, or in 
the make-up of the tape. Some mistakes may cause the answer to be in error. 
Others may cause the machine to obey a wrong sequence of orders, or to try 
to obey some constant order or pseudo-order not intended for such use. In 
the latter case the machine will stop on a meaningless order, or perhaps go 
into a closed loop. The machine may print a number of symbols or it may 
print nothing at all. 

Experience has shown that such mistakes are much more difficult to 
avoid than might be expected. It is, in fact, rare for a program to work cor­
recti~ the first time it is tried, and often several attempts must be made be­
fore all errors are eliminated. Since much machine time can be lost in this 
way a major preoccupation of the EDSAC group at the present time is the 
development of techniques for avoiding errors, detecting them before the tape 
is put on the machine, and locating any which remain undetected with a mini­
mum expenditure of machine time. 

Library subroutines are all checked on the machine before being put into 
the library and are presumably free from error. This in itself would be a suf­
ficient reason for having a library, quite apart from any other considerations. 
When subroutines are specially made for a particular program it is good prac­
tice to test them beforehand by means of short programs constructed for the 
purpose. 

It is easier to avoid and detect errors if the program is drawn up in an 
orderly and logical manner. For example, if siX quantities x : , x2 , x3 , Yl, y2 , 

Y3 occur, they should be placed in consecutive storage locations and not scat­
tered about the store. Similarly, orders and pseudo-orders used for counting 
purposes should be arranged on some plan and not placed at random in the 
store. When drawing up a complicated program the programmer should not 
hesitate to copy it out in a more logical layout whenever necessary. The paral­
lel case of hand computation will suggest itself; good computers usually pay 
great attention to the arrangement of their work sheets. 

It is of great assistance, both to the programmer and to a person check­
ing the program, to provide notes describing the actions of the orders, as is 
done for all library subroutines (see Part III). The notation for entry points, 
etc., given at the beginning of part III, is also designed to help in understanding 
programs. 

5-1 Proofreading of programs. Points to be checked. 

Some idea of the types of mistake which can occur is given by the follow­
ing list of points that should be checked before a program is punched. Many 
of these are of a purely clerical nature, and could be checked by a person with­
out great mathematical ability. Others may require an understanding of the 
particular calculation. 

38 
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1. No two subroutines may occupy the same storage locations, unless 
one is only used temporarily before the other is inserted. 

2. All conditions contained in the specification of each library subrou­
tine used must be met. For example, if it is necessary that the subroutine 
start in an even location, this point should be checked, and 'it should be made 
certain that all parameters have been correctly specified. 

3. When calling in a closed subroutine, (a) the accumulator must first 
be cleared, (b) the A and G orders must specify the correct addresses. 

4. Where necessary, addresses must be corrected after renumbering. 
5. Counting operations should give the correct number of repetitions, 

and control must be transferred to the correct point when repeating a cycle. 
6. The program should be prepared so as to leave a location for any 

order which is to be planted by the program itself. This is usually done by 
writing a dummy order such as (Z F) or (P F). 

7. Control must be directed to the correct place to start the program. 
8. No item of information in the store should be overwritten until it is 

no longer required. In particular, no wanted information should be left in a 
location that is used as a working positio:t by a subroutine. 

9. The contents of the multiplier register must not be assumed to be 
unaltered by a subroutine. 

5- 2 Location of mistakes in a program. 

It might be thought that a good way of finding errors in a program would 
be to make the machine proceed order by order under the control of the 
"Single E.P." button (see Section 6-4), and to study the numbers in the ma­
chine by watching the monitors attached to the arithmetical unit and store. 
This, however, usually turns out to be a very slow and inefficient process, 
especially as the numbers are displayed in binary form. Methods have there­
fore been developed which permit the machine to proceed unhindered by the 
operator, whilst printing on the teleprinter a permanent record that can be 
studied at leisure, and that will assist in understanding the nature of the mis­
take . 

One such method is to wait until the machine has stopped (or to stop it 
deliberately) and then, without clearing the whole store, to insert (by pressing 
the starter button again) a small program which will print, in suitable form, 
the contents of part of the store. This has come to be known as the "post­
mortem" method. Tapes are kept available near the EDSAC for printing the 
function letters, or address parts, of orders in consecutive storage locations. 
Programmers may also prepare their own post-mortem tapes. 

This method yields only a static picture of the store as it was when the 
calculation stopped. Other methods have been derived to provide information 
about the whole course of the calculation. These necessarily involve modify­
ing the program to cause the extra printing, and therefore a new tape must be 
prepared and presented to the machine. This, however, is no hardship, since 
the machine will read an average tape in about a minute, and the preparation 
need not take more than a few minutes of the programmer's time. 

5-21 Method using extra output orders. One simple and very useful plan 
is to place an output order at the beginning of the master routine and in front 
of each subroutine so that the completion of the various stages of the program 
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will be recorded by the printing of suitably chosen symbols. If by reason of a 
programmer's blunder the machine stops in the middle of the program, the 
symbols printed will enable the error to be localized. Letter and figure shifts 
must also be inserted if letters are -required for indication purposes while the 
ordinary printing of numbers called for by the program takes place correctly. 

As an example the program given in Section 7-2 is repeated in Section 
7-4 with the extra print orders incorporated. 

When the program has been made to work correctly, the extra printing 
may be eliminated by omitting the extra orders from the tape. If an assembly 
subroutine (or the second method of assembling a program described in Sec­
tion 7-1) is used, no renumbering is necessary. Note that two extra orders 
must then be placed in front of any subroutine which is required to have its 
first order in an even location. 

It is a good plan to include extra printing of the kind described here in 
all new programs when they are first drawn up rather than to wait until the 
program has been tried and found to fail. 

5-22 Subroutines for checking programs. Methods like the foregoing 
are too limited to deal with many of the questions that arise. In such cases 
a considerable modification of, or addition to, the original program is neces­
sary. It has been found possible to construct subroutines which incorporate 
all these modifications and additions, and which are sufficiently general to be 
applied to any program. These form category C of the library and fall into 
two classifications, those that check the sequence of operations and those that 
check the numbers operated upon. 

For their operation, these methods depend largely on the technique used 
in interpretive subroutines (see Section 4-8), namely, the repeated selection 
of "parameters" from another part of the store. In this case, however, the 
"parameters" are simply the orders of the original program, and they are 
selected and carried out in exactly the same manner and sequence as if they 
were being obeyed directly. The purpose here is not to enable new operations 
to be initiated by each order, but to make it possible (by suitably designing 
the checking routine) to interpose the printing of extra information for check­
ing purposes. Another technique employed is the planting in the original pro­
gram of an E order (or "blocking order") which switches control to the check­
ing routine. 

For a full discussion of checking routines see ref. 13. 

5-23 Subroutines that check the sequence of orders carried out. Certain 
checking subroutines print the function letters of orders as they are obeyed, 
this being the most convenient way of checking the sequence of operations. 
Subroutine Cll is the simplest; it checks through the whole program without 
a break. Letters are printed in a line across the page until a transfer of con­
trol occurs, when a new line is started. An example of the use of Cll is given 
in Section 7-5. 

C7, C9, and C12 are rather more elaborate versions of Cll, and provide 
for the suppression of checking or printing during irrelevant parts of the pro­
gram to save time. 

5-24 Subroutines that provide numerical checks. Some mistakes in pro­
grams cause the numbers operated upon to be in error, without immediately 
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affecting the sequence in which the orders are obeyed. It cannot therefore be 
assumed that if a program apparently operates correctly it is giving correct 
results, and careful numerical checks must always be applied. Moreover, the 
diagnosis of such mistakes can be as difficult as that of mistakes which affect 
the order sequence. 

A numerical fault may be due to a mistake in a single order or in a con­
stant, or to a more fundamental mistake, such as a wrong choice of scale fac­
tors that causes a number in the machine to exceed unity. Some knowledge 
can be gained by printing several intermediate results, and it is usually ad­
visable to include such extra printing in the first draft of any program. 

If this is insufficient, subroutines Cl, CS, and ClO can be used, in con­
junction with the program, to cause the printing at frequent intervals of num­
bers involved in the calculation. 

5-3 Counting operations. 

Even the simplest of programs usually contains cycles of orders which 
have to be repeated a certain number of times. The methods commonly em­
ployed to ensure that the correct number of repetitions is carried out are ex­
plained in Appendix E. 

Some programs involve rather complicated counting operations, and it 
is easy to make an error in these. As a means of simplifying the preparation 
of such programs a number of counting subroutines, Ul to US, have been in­
corporated in the library. The use of the closed counting subroutines Ul and 
U4 undoubtedly enables the layout to be improved but at the expense of making 
the program rather longer than it otherwise would have been. The open rou­
tines U2, U3, and US will probably be of more general utility and their use 
suould enable many errors of counting to be avoided. 



CHAPTER 6 

USE OF THE EDSAC AND ITS ASSOCIATED EQUIPMENT 

6-1 Tape punching and editing facilities. 

This section will deal with the preparation of a punched tape from a 
program sheet which has been prepared in the manner described in the pre­
vious sections. So far no attempt has been made to set up in the Mathemati­
cal Laboratory an elaborate organization for punching tapes. Most of the 
punching is done by the users themselves , although some assistance is avail­
able when necessary. The problems dealt with so far have not required a 
great deal of input, although in one or two cases several hundred numbers 
have had to be read for one run. 

The main pieces of equipment provided for the preparation and editing 
of tapes are described below. 

6-11 Keyboard perforator. Use is made of standard 5-hole teleprinter 
keyboard perforators modified so as to conform to the special EDSAC code. 
Several are available for use. 

6-12 Tape Duplicator. This name is given to a device used (a) to pre­
pare a corrected copy of a tape and (b) to build up a complete program tape 
from number sequences, the master routine , and subroutines which havE: 
been punched separately. It incorporates a keyboard perforator which has 
been fitted with five solenoids (one for each hole) in addition to the usual keys. 
The solenoids are linked to a tape reader and the operator may prepare a new 
tape partly by operating the keys in the ordinary way and partly by copying 
data from a separate piece of tape placed in the tape reader. When copying 
he can make the duplicator run continuously or in single steps. If he wishes 
he can also make the tape reader advance the original tape without copying 
it onto the program tape. If a switch marked "Ignore 11111" is closed any 
row of the original tape in which all five holes are punched will be passed 
over and omitted from the copy. This enables a row of five holes to be used 
as an erase sign when punching. If another switch marked ' 'Ignore 00000'' is 
closed the tape reader will automatically pass over blank tape. A further 
facility is a key which causes blank tape to be fed automatically from the 
punch. 

Two duplicators are available and a standard tape reperforator for pro­
ducing straight copies of a tape is also provided. Two tape readers and a 
changeover switch are provided with each duplicator for use when building up 
a complicated tape from short pieces. 

6-13 Tape comparator. This device enables two tapes which are sup­
posed to be identical to be checked one against the other. They are placed in 
separate tape reade1·s and when a switch is depressed are advanced automati­
cally as long as the symbols punched on them are identical. When a discrep­
ancy is encountered the tape readers stop. Switches are provided for advanc­
ing either tape independently in single steps and for ignoring blank tape. Two 
comparators are available. 

42 
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It is normal practice to punch the various number sequences, master 
routine, and subroutines which go to make up a program tape separately and 
to combine them later. Each part is punched twice and the two are checked 
by means of a comparator to make sure they agree. In this way errors of 
punching can be detected. Of the various errors which occur when preparing 
a problem for the EDSAC errors in punching are the least excusable. 

6-2 Storage of library subroutines. 

Subroutines in the library are punched on colored tape so that they can 
easily be distinguished from program tapes, which should be white. Several 
copies of each subroutine are provided and when not in use each copy is rolled 
in a small cardboard box. The boxes are filed in serial order in a steel cabi­
net. The master copy of each subroutine is kept under lock and key and is 
used only when all existing copies of the subroutine are damaged. The master 
tape is then used to prepare further copies by means of a duplicator. All 
copies must be checked against the master, by means of a comparat1r, before 
being put into the library for general use. 

6-3 EDSAC organization. 

The following brief note on the organization of the machine room may be 
of interest. When a program tape is ready to be put on the machine the pro­
grammer writes out a ticket saying what he expects the machine to print and 
giving any other information which the operator may need. He then hangs the 
tape with its ticket from a clip running on a horizontal wire. The various 
tapes hanging from the wire form a queue and the machine operator puts them 
through the EDSAC in order, subject to any overriding instructions about pri­
ority. If the machine prints what is expected, the output sheet is placed in a 
rack ready for collection by the programmer. If the machine stops unexpected­
ly the operator notes on the ticket the place at which it has stopped (that is, 
the number in the sequence control register) and then proceeds to the next 
tape in the queue. 

A m•mber of test tapes are available by means of which the operator can 
make regular checks on the operation of the machine. Should one of these 
tapes reveal an error the maintenance staff is called upon to rectifv the fault. 

6-4 EDSAC controls. 

The EDSAC requires no preliminary "setting up" for a particular pro­
gram. The procedure when a program tape is to be run is as follows . 

1. The tape is inserted in the tape reader. 
2. The "clear store" button is pressed to clear out any information 

previously in the store. 
3. The start button is pressed and causes the initial orders to be placed 

in the store. Under control of these orders the tape is then read and the pro­
gram carried out according to the orders on the tape. 

The purpose of the "clear store" button is to ensure that the machine is 
always in the same condition when a program is started, and should therefore 
always react in the same way to the same tape. If, during a program, the 
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machine is suspected of being faulty, the program can be repeated and if con­
sistent results are not obtained the fault is known to lie with the machine and 
not with the program. Other push button controls provided for occasional use 
are 

Stop 

Reset 

Single E.P. 

- stops the machine in exactly the same way as a Z 
order. 

- used to restart the machine after a "stop" operation 
or a Z order. 

- may be used after a "stop" operation or a Z order. 
Every operation of this control causes the machine 
to execute one single order. 



CHAPTER 7 

EXAMPLES 

Sections 7-1 to 7-5 describe how some relatively simple calculations 
might be programmed for solution on the EDSAC, making use of library sub­
routines. Sections 7-6 to 7-8 are examples of actual problems prepared for 
the EDSAC. In all the program sheets the notation used is that described at 
the beginning of Part III. 

7-1 Example 1. Calculation of e-s in x (see Section 4-4) . 

This process causes a series of positive numbers x (<1) to be read 
from the tape and the quantities e- 5 i n x to be calculated and printed to nine 
decimal places. Four values of x have been chosen: 0.1234, 0.986, 0. 74281079, 
and 0.84314763. Each of these will be read in turn and the corresponding 
value of the function printed before the next value of x is read. After printing 
the fourth value of the function the machine will stop. Five library subrou­
tines and a master routine specially constructed for this problem are used 
and positioned in the store as follows: 

Subroutines, etc. 

R9 
T7 (sine, rapid) 
E4 (exponential, fast) 
R3 (input one signed 

decimal fraction) 
Pll (print signed deci­

mals in preset layout) 
Master routine 

Location of 
first order 

56 
72* 

108* 

144* 

185 
240 

Number of storage 
locations occupied 

15 
36 
36 

41 

55 

*First order must be in an even location. 

7-11 Make-up of tape. 

[R9 [ 

PF 

space P z 
[T7[ 

space P Z 

[E4 [ 

space P Z 

jR3[ 

space P Z 

R9 begins with P K T 56 K so that it is 
automatically placed in locations 56 to 70. 

Extra pseudo-order put in to bring first 
order of T7 into an even storage location. 

45 
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GK 

T 45 K 

A 258 D (H parameter) 
P 20 F (N parameter) 
P 47 (} (M parameter) 
P3104 F (.1 parameter) 

space P 'l 

I Master routin~ 

space P K 

E 240 K P F 

1234 + 
986 + 

742 81079 + 
843 14763 + 

1 -

7-12 Master routine. 

Start 
17-0 

1 
R3 - - 2 

3 
4 

3-5 
6 
7 
8 

T7-9 
10 
11 
12 

G 
A 
G 
A 
E 
z 
R 
T 
A 
G 
s 
L 
T 
H 

K 
(} 

144 F 
D 

5 (} 

F 
D 

4 D 
7 (} 

72 F 
4 D 

D 
D 
D 

Places in 42 the address specified in the 
current transfer order. 

Sets transfer order s o that parameters 
following go into 45 to 48. 

4 columns j parameters 
3 spaces between columns used by P11 
digit layout: 4 digits, 

space, 5 digits 
Pll begins with T Z, so that the address 

stored in 42 is replaced in the transfer 
order. Pll is therefore placed in 185 
to 239. 

When this control combination is read, 
control is switched to 240, which con­
tains the first order of the master rou­
tine. 

l values of x. These are not placed in the 
· store during input of orders but are read 

J one by one under the control of R3 when 
that subroutine is called in by the mas­
ter routine. 

the master routine is drawn up so as to 
stop the machine if the number read 
from the tape is negative , and this stops 
the program. 

J calls in R3 , which reads x from the tape 
and places it in OD. 

J 
J 
J 
J 

x to accumulator. 

stops process if x is negative. 

1 
2 x to 4D ready for T7. 

calls in T7, places ~ sin x in 4D. 

-sin x to OD. 

-sin x to multiplier register ready for E4. 



13 
14 

E4-15 
16 

P11-17 

A 
G 
A 
G 
E 

E 
T 

13 
108 

15 
185 

69 
258 

9 

7-13 Notes. 

(} 

F 
(} 

F 
(} 

K 
D 
1T 

EXAMPLES 

J calls in E4, forms e-sin x and places it 
in OD. 

J calls in P11, prints e- s in x . 

transfers control to 08 as accumulator 
is clear. 
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J places decimal round-off number required 
by P11 (i.e., 5.1o-10 ) in 2580. 

1. "Space" indicates that a few rows of blanks (there must be more than 
one) are left on the tape. The object is to enable the subroutines to be identi­
fied easily when checking the tape or making corrections (see Chapter 2). The 
control combination P Z which follows each space sets the initial orders back 
into the condition they were in before the space. If spaces are not required on 
the tape these control combinations should be omitted. 

2. The machine can be stopped by pressing the stop button when reading 
the blank tape following the main program and can be restarted by pressing 
the reset button. This does not affect the content of the store. In certain cir­
cumstances it is convenient to divide the tape into two parts, an order tape, 
going as far as the main program and ending with a length of blank tape, and a 
number tape, beginning with P K E 240 K P F, followed by the numbers. The 
machine would then be stopped on blank tape after the master routine had been 
read, the number tape would be inserted in the tape reader with blank tape un­
der the reading head, and the machine would be restarted by pressing the re­
set button. In this way a great many number tapes could be used with one order 
tape. 

3. This program consists of a total of 202 orders, but only the 18 orders 
of the master routine have to be drawn up especially for this calculation. 

7-14 Alternative method of making up a tape. In the above method of 
making up a program tape the subroutines automatically follow one another in­
to the store head-to-tail. An alternative method is to place each subroutine 
into a definite place in the store by means of a control combination of the form 
T m K. If this method is used, the make-up of the tape is as follows: 

~ 
space 

P K T 72 K 

~ 
space 

P K T 108 K 

~ 
space 

(If spaces are not required the P K' s 
may be omitted.) 
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P K T 144 K 

jR3j 

space 

P K T 185 K 
G K 
T 45 K 
A 258 D 
P 20 F 
p 47 0 
P3104 F 

jPllj 

space 

P K T 240 K 

ELECTRONIC DIGITAL COMPUTER 

I Master routine I 
space 

P K E 240 K P F 
1234 + 
986 + 

742 81079 + 
843 14763 + 

1 -

This method of making up a tape puts the subroutines into the same lo­
cations as the previously described method. A few spare locations can, how­
ever , be left between the subroutines if desired. This reduces the possibility 
of error arising because of a miscalculation of the locations required by a 
subroutine and enables corrections involving a slight increase of length to be 
made to a subroutine without renumbering. Such corrections often must be 
made to subroutines which have been specially constructed for the program. 

Another method of making up a tape for a complete program is exempli­
fied in Section 7-3. 

7-2 Example 2. Calculation of 1r by evaluation of definite integral. 

The formula chosen is i 1r = foh + x2f 1 dx. In order that all numbers 

concerned in the calculation shall be less than unity this must first be written 
in the form 

1/2 " I 3/16 
10 = 0 {15/16)(0.25+ x2) dx. 

Evaluation of the integral is carried out by subroutine Q2, which re­
quires an auxiliary subroutine to calculate the integrand. This must be so 
designed that it evaluates the integrand for the value of x given by C(OD) and 
places it in OD; it is called into use by Q2 as required. The auxiliary subrou­
tine is given in full in Section 7-23. It requires a division subroutine, and the 
one chosen is D6. 
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The program requires two other subroutines, R9, which is used by Q2, 
and Pl, which is used to print the result, which consists of one ten- digit num­
ber. 

7-21 Make-up of tape. 

IR91 

space 

P K T 72 K 

I Master routine! 

space 

P K T 96 K 

/Auxiliary subroutine / 

space 

P K T 112 K 
G K T 45 K 

P 9 2 D (H parameter) 
G 96 F (N parameter) 

~ 

space 

P K T 164 K 

IP11 
space 

P K T 185 K 

/o6j 
E 72 K P F 

7-22 Master routine. 

Start- 0 
1 
2 
3 
4 
5 

G K 
0 15 9 
0 13 () 
0 14 () 
T 20 1r 6 
A 19 9 
T 22 1r6 

R9 begins with P K T 56 K, so that it is 
automatically placed in locations 56-70. 

Sets transfer order so that master routine 
goes into store starting at 72. 

Auxiliary goes into store starting at 96. 

Q2 goes into store starting at 112. 
Sets transfer order so that following para­

meters, required by Q2, go into 45 and 
46. 

Q2 begins with T Z, so that transfer order 
is reset after planting of parameters. 

P1 goes into store starting at 164. 

D6 goes into store starting at 185. 

When this control combination is read con­
trol is transferred to the order in 72, 
that is, to the beginning of the master 
routine. 

figures 
carriage return J (see note 5) 
line feed 

J Sets limits of integration: 0 to 207r6, 
1/2 to 227r9, (Note: started with accumu­
lator clear.) 
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6 A 6 () J calls in Q2, which places integral in OD. 
7 G 112 F 

Q2-8 A 8 () J calls in P1, which prints integral. 
9 G 164 F 

10 II P 10 F parameter for Pl. 
P1-11 0 15 () extra output order to print last figure. 

12 z F 
13 () F carriage return 
14 L1 F line feed 
15 1r F figures 
16 K 2048 F 15·2-4 

17 R F 4·2-4 

18 E F 3·2-4 

19 I F 8·2-4 

20 (P F) J set by 3 
21 (P F) 
22 (P F) J set by 5 
23 (P F) 

7-23 Auxiliary subroutine 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

D6-15 

Notes: 

G 
A 
T 
H 
v 
A 
y 
T 
H 
v 
y 
T 
A 
T 
A 
G 

(Z 

3 
15 

17 

16 

4 
18 

13 
185 

K 
F 
() 

D 
D 
M 
F 
D 
M 
0 
F 
0 
M 
0 
() 

F 
F) 

plant link 

J x2 

0.25 + x2 to OD 

15/16·(0.25 + x2) to 40 

3/16 to 00 

J calls in 06, which places integrand in 
00. 

link 

1. If spaces are not required the P K's may be omitted. 
2. The mechanism of the teleprinter output system is such that an 0 

order sets up on the printer the character next to be printed and at the same 
time prints the character set up by the previous 0 order. Thus, at the end of 
a program an extra 0 order must be supplied in order to print the final charac­
ter. Some print subroutines do this automatically by printing one or more 
spaces after each number. P1, used in this program, does not, and an extra 
0 order is therefore supplied in the master routine. 

3. "Carriage return" must precede "line feed," since it takes longer 
than the time required for other teleprinter operations. 
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4. The master routine must start at an even location, since locations 
20 6 and 216 are combined to form one long storage location. 

7-3 Alternative method for Example 2. 
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The example given in Section 7-2 will now be repeated in a revised form 
making use of assembly subroutine Ml. The components of the program are 

H sequence, 
Master routine, 
Auxiliary subroutine, 
Library subroutines R9, Q2, Pl, and D6. 

R9, however, is not dealt with by Ml but is automatically placed in its usual 
position (locations 56-70). The H sequence consists of a number of pseudo­
orders which, in Section 7-2, were included at the end of the master routine. 

Storage space is allocated as follows: 
56-70 R9 
71-75 unused 

76 reference order for master routine 

] 
see 77 do. auxiliary 

78 do. Q2 Section 
4-62 79 do. Pl 

80 do. D6 
82-97 Ml 
98- H sequence 

7-31 Make up of tape. 

JR9J 

space 

P K T 82 K 
JMlj 
P 76 F 

T 98 K 

space 

PZGK 
E 82 K T F 

I H sequence! 

space 

PZGK 
T 92 K T¢1 
E 82 KIF 

R9 begins with P K T 56 K, so that it is 
placed in locations 56-70. 

First order of Ml goes into 82. 

Reference order of master] 
routine goes into 76. parameters 

First order of H sequence used by Ml 
goes into 98. 

Calls in Ml, which places P 98 F in 45. 

Placed with first order in 98. 

Sets Ml ready to deal with master routine. 
Calls in Ml, which places reference order 

in 76. 
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I Master routine I 
space 

PZGK 
E 82 K P F 

!Auxiliary I 
space 

PZGK 
E82KPF 

T45 K 
P 72D 
G 1 tP 

~ 
space 

PZGK 
E82KPF 

space 

PZGK 
E82KPF 

lo61 
E 25 K 
Et,6PF 

7-32 H sequence • 

H 0 .1 
1 6 
2 K 
3 R 
4 E 
5 I 
6 1f' 

2048 

7-33 Master routine. 

G 
start -o 0 6 

1 0 1 
2 0 

F 
F 
F 
F 
F 
F 
F 

K 
H 
H 
H 

Calls in M1, which places reference order 
in 77. 

Calls in M1, which places reference order 
in 78. 

J Plants parameters required by Q2. 

Calls in M1, which places reference order 
in 79. 

Calls in M1, which places reference order 
in 80. 

J Sends control to the first order of the 
master routine. 

line feed 
carriage return 
15·2-4 

4·2-4 

3·2-4 

8·2 .. 4 

figure shift 

figures 
carriage return 
line feed 



3 
4 
5 
6 
7 

Q2- 8 
9 

10 
P1-11 

12 

T 
A 
T 
A 
G 
A 
G 

liP 
0 
z 

72 D 
5 H 

74 D 
6 (J 

2 q, 
8 (J 

3 q, 
10 F 
6 H 

F 

7-34 Auxiliary subroutine 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

06-15 

G 
A 
T 
H 
v 
A 
y 
T 
H 
v 
y 
T 
A 
T 
A 
G 

IZ 

K 
3 F 

15 (J 

D 
D 

3 H 
F 
D 

2 H 
D 
F 

4 D 
4 H 

D 
13 (J 

4 q, 
FJ 

EXAMPLES 

J Sets limits of integration: 0 to 720, 
1/2 to 74 D. 

J calls in Q2. 

J calls in Pl. 

parameter for Pl. 
extra output order to print last figure. 

plant link 

x2 to accumulator 
4·2-4 + x 2 

0.25 + x2 to OD 
15·2-4 

15/16·(0.25 + x2) to 4D 

3/16 to OD 

J Calls in D6, which places the integrand 
in OD. 

link 

7-4 Example 2, with extra print orders for checking. 
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The example of Section 7-2 is given below in a modified form in which 
extra print orders are included as described in Section 5-21. The letters 
printed by the orders preceding the various subroutines are as follows: A for 
the auxiliary, Q for Q2, P for Pl, and D for 06. These letters are stored in 
locations numbered, for convenience, with respect to the code letter M. In 
addition, an order which operates the letter-shift of the teleprinter is included 
in front of Q2 (the subroutine operated first), and an order which puts it back 
on to figures is included in front of Pl. 

This example will print the following: 

QADADADADADP3141592653 

7-41 Make-up of tape. 

IR9I 
T47 K 
P 228 F (M parameter) 

space 
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P K T 72 K 

I Master routine I 
space 

P K T 96 K 
OM 

I Auxiliary subroutine I 
space 

P K T 114 K 
04M 
01M 
G K T 45 K 
P 90 D (H parameter)] 
G 96 F (N parameter) 

~ 
space 

P K T 168 K 
02M 
05M 

IP11 
space 

P K T 191 K 
03M 

ID6j 
space 

P K T 228 K 
OM A F 
1 QF 
2 PF 
3 DF 
4 K 2048 F 
5 1 1T F 

E 72 K P F 

Print A. This order goes into 96. 

Auxiliary starts at 97. 

Letter shift J extra print orders in 114 
Print Q and 115. 

Parameters for Q2. 

Q2 starts at 116. 

Print P J extra print orders in 168 
Figure shift and 169. 

P1 starts at 170. 

Print D. This order gnes into 191. 

D6 starts at 192. 

Denotes auxiliary] C d 1 tt t b Denotes Q2 o e e ers o e 
Denotes p 1 printed by the extra 
Denotes D6 print orders. 
Letter shift 
Figure shift 
Transfers control to the master routine 

7-5 Application of checking subroutine Cll to Example 2. 

Cll calls for a small alteration to the original tape of Section 7-21. It 
is merely necessary to remove the control combination at the end of the tape 
and replace it by C11. The point of entry into the master routine is now spe­
cified by an E order at the end of the tape, following Cll. In this example it 
is necessary to avoid the first order of the master routine because this order 
causes a figure shift, and the teleprinter is set by C4 to print letters. Hence 
the tape is terminated byE 73 F. The end of the tape appears thus: 
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Ins! 
1c111 
E 73 F 
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The first few rows of printing produced by this tape would be as follows. 

Printed by teleprinter 

0 
TATAG 

ATTSAUATAHVYTAG 
ATHVAYTHVYTATAG 
A TSETSE 
SE 
LE 
TAL TALE 
TALTALERULATE 
HSNAYG 
UNATHSNAYG 
UNATHSNAYG 
UNATHSNAYG 
UNA THSNA YGSVTE 
E 
HVAYTASG 
AUATAHVYTAG 
ATHVAYTHVYTATAG 
ATSETSTE 
SE 
LE 
TAL . . . etc. 

7-51 Notes: 

Corresponding orders 

master routine 
master routine 

Q2 
Aux. 
D6 

Aux. 
Q2 

Aux. 
D6 

1 and 2 
3 to 7 
0 to 14 
0 to 14 
0 to 7 
2 and 3 

13 and 14 
8 to 14 
8 to 20 

25 to 30 
21 to 30 
21 to 30 
21 to 30 
21 to 34 

15 
15 to 22 

4 to 14 
0 to 14 
0 to 7 
2 and 3 

13 and 14 
8 to . . . 

1. The carriage return and line feed at the beginning of the master 
routine each affect the te leprinter after the corresponding " 0 " has been 
printed. The result of this is that both O's are printed in the same position 
on the paper, and the following letters on the next line. 

When P1 is reached, the decimal digits which it sends to the teleprinter 
will be printed as letters immediately after the " 0" indicating the print order 
in Pl. They will not, however, be the digits obtained in the original example, 
because Pl employs the F order and therefore fails when Cll is used. 

2. The exact number of repetitions of the groups of orders 8 to 14 a nd 
21 to 30 of D6 depends on the numbers operated upon. The above example 
shows a probable course of the calculation. 
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7-6 Example of integration of an ordinary differential equation. 

7-61 Statement of problem. The equation considered is 

dy y(1+2y-4x) 
dX = x(y-x+N) ' 

where N is a constant. This equation occurs in theoretical astrophysics. 
In the vicinity of the origin, a solution for any given value of N has the 

behavior y = (Bx)1;1l , where B is arbitrary. Solutions are required for a set 
of values of N and, for each value of N, for a set of values of B. Each solu­
tion is to be tabulated at an interval of 0.01 in x until either y>1 or dy/dx<-1, 
values of y being correct to five decimals. 

7-62 Method. The formula for dy/dx is formally indeterminate at x = 0, 
so that it is necessary to start the numerical integration from some small 
value x o of x, at which the value Yo of solution y can be evaluated from a series 
expansion. This starting point was taken as xo = 0.01; the corresponding val­
ues of y0 for different values of B were calculated separately and furnished to 
the machine as part of the number input. The program is so arranged that the 
machine evaluates automatically the whole set of solutions for a given value of 
Nand different values of Yo· 

An input subroutine is required to take in the values of x 0 , N, and the 
set of values of Yo for which solutions are required. Subroutines for step-by­
step integration of a first-order differential equation and for printing are also 
required. The subroutines used are R3, G1, and Pll. G1 requires an auxili­
ary subroutine for calculating 2mh(dy/dx), and this auxiliary subroutine has to 
be programmed in detail; it involves a division process and for this D7 is 
used. Assembly subroutine M1 is used to organize the various subroutines in­
to a complete program. 

7-63 Allocation of storage locations. Locations OD, 4D, 6D are used by 
D7, Pll, and R3; they are also used by G1, which in addition requires six stor­
age locations for y, x, 2mh(dy/dx), 2mh, 2mq1 and 2mq2 (ql and q2 being inter­
mediate quantities calculated in the course of the use of G1). These have been 
taken as 10D, 12D, ... , 20D. Storage for N, x0 , and a round-off number are 
provided at 22D, 24D, and 26D. 

7-64 Auxiliary subroutine. This subroutine must put 

2mh dy _ 2mh y(1 + 2y - 4x) 
dx - x(y - X + N) 

into location 14D. The quantities x andy are in the range (0,1) and, for the 
solutions required, N and ~h are less than 1. However, 4x may exceed unity, 
so we must introduce a scaling factor 2-2 and calculate 

~h y(0.25 + 0.5y - x) 
x(0.25(y-x) + 0.25N) 

The sequence of operations by which this quantity is evaluated must be 
planned with care, to ensure that all intermediate quantities remain within the 
capacity of the accumulator. The method adopted is to test whether I y(0.25 + 
0.5y-x)i > x(0.25(y-x) + 0.25N). If this condition is satisfied, the multiplication 
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of the numerator by 2mb is done first and is followed by the division. If the 
condition is not satisfied, the division is carried out first and the result is 
multiplied by 2mh. The reason for this procedure is as follows. If two small 
quantities are multiplied and give a product less than 2-34 , this appears as 
zero, and subsequent division by a small number will still give a zero result 
although the correct result may be much greater than 2-34 • Hence in calculat­
ing ab/c, it is advisable to carry out the division first if lb/cl<l. 

7-65 Master routine. This is straightforward, and stops the integration 
when either y2:1 - 2 34 or (dy/clx)<-1. The value of x for which the integra­
tion is stopped is printed in brackets at the end of the table of results. 

7-66 Mathematical checks. These are required to verify that the inter­
val is small enough for the step-by-step integration process and that the solu­
tion is stable despite rounding-off errors. These checks are not programmed 
but must be carried out by hand outside the machine. Checks used are the 
evaluation, at selected points, of (dy/dx) from the differential equation and also 
from a central-difference formula. Further, results for one special case, 
namely N = 0.4, xo = 0.074515, Yo = 0.049793, can be obtained from the tabu­
lated solution of Emden' s equation. When this problem was run on the EOSAC, 
agreement with these results to the required degree of accuracy was obtained. 

7-67 Master routine. 

0 
1 

R3- 2 
3 
4 
5 

R3 - 6 
7 
8 
9 

R3-10 
11 
12 
13 

R3 - 14 
15 
16 
17 

56-18 
19 
20 
21 
22 
23 
24 
25 

G 
A 
G 
A 
T 
A 
G 
A 
T 
A 
G 
A 
T 
A 
G 
A 
R 
y 
T 
A 
T 
A 
A 
T 

(P 
A 
G 

K 
9 

44--
0 

16 0 
4 9 
4 ¢ 

0 
26 0 

8 9 
4 ¢ 

0 
24 0 
12 9 
4 ¢ 

0 
1 F 

F 
22 0 
24 0 
12 0 

5 ¢ 
H 

23 9 
F) 

24 9 
4 ¢ 

J call in R3' to read 23h 

J 23 h to 160 

I 
I J 

read round-off constant 
and send to 260 

J 
read 

read x0 and send to 240 constants 

J read N 

I 

J 
1 

send 4 N to 220 

J reset x to xo 

J rtto evaluate 
form order 23** print one solution 

new of equation 
becomes T q+20 F block* 

J read next Yo 
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R3-26 
27 
28 
29 
30 

27-31 
32 
33 

47-34 
35 
36 
37 
38 

Pll-39 
40 

Gl-41 
42 
43 
44 
45 
46 
47 

43-48 
49 
50 
51 
52 
53 

Pll-54 
55 
56 

I 

A 
E 
T 
0 
z 
T 
T 
T 
T 
A 
T 
A 
G 
A 
G 
A 
A 
G 
T 
A 
A 
E 
T 
A 
T 
0 
A 
G 
0 
0 
E 

0 
31 (} 

F 
H 
F J 

10 0 
18 0 
20 0 

F 
10 0 

0 J 
37 (} 

5 rl> J 
39 I:J 

3 rl> J 
10 0 

2rrH 
48 (} J 

F 
14 0 
16 0 
34 (} J 

F 
12 0 

0 J 
1 H 

52 (} 

5 rl> J 
4 H 
6 H 

18 9 

*see Pll, note 7 (Part ll). 

Yo to accumulator 

stop if Yo< O 

set y =Yo 
clear 180 
clear 200 
clear ace . 

y to OD J prlnt y 

call in Pll 

call in Gl 
one step of 

jump to 48 if integration 

y 2.1 - 2-34 

clear accumulator 

return to 34 if 
y'2_-1 

clear accumulator 

x to 00 

print ( l print (x) 
call in Pll 

print) 
line feed 
return to 18 

evaluate 
one solution 
of equation 

**C(5¢) = G q F (if Pll starts in q), C(OH) = J 20 F. Thus C(5¢) + 
C(OH) = (G + J) q + 20 F = T q + 20 F. 

7-68 Auxiliary subroutine. Puts 23 h(dy/dx) in 140 where 

dy y(0.25 + 0.5y - x) 
ax = x(0.25(y-x) + 0.25N) 

G K 
0 A 3 F J plant link 
1 T 46 9 
2 A 10 0 

l 
3 s 12 0 
4 R 1 F 1 1 
5 A 22 0 4(y-x) + 4 N to OD 

6 y F 
7 T 0 



8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

22-25 
26 
27 
28 
29 

07 - 30 
31 
32 
33 
34 
35 

26-36 
37 
38 
39 
40 
41 
42 

07-43 
44 
45 

35- 46 

H 
v 
y 
T 
A 
R 
s 
A 
y 
T 
H 
v 
y 
u 
E 
T 
s 
s 
E 
T 
A 
G 
T 
H 
v 
y 
T 
E 
T 
H 
v 
y 
T 
A 
G 
T 
A 
T 

(Z 

12 0 
0 
F 

4 0 
10 0 

0 
12 0 

5 H 
F 
0 

10 0 
0 
F 
0 

25 9 
14 F 

0 
4 0 

36 9 
14 F 
28 9 

2 q, 
4 F 

16 0 
0 
F 

14 0 
46 9 
14 F 
16 0 

0 
F 
0 

41 9 
2 q, 
4 F 

0 
14 0 

F) 
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J denominator to 40 

l 1 1 '4 + 2"y- x to 00 

J numerator to 00 

J modulus of numerator to accumulator 

subtract denominator * 
jump if ldy/dx l.2.1 
clear accumulator 

J call in 07 to 
form (dy/dx) 

clear accumulator 

J 
23h(dy/dx) to ldy/dxl<1 

14 0 

to link 
clear accumulator 

J 
multi{.lly numerator 

by 23h 

J call in 07 to form ldy/dxl.?1 

23 h(dy/dx) 
clear accumulator 

J 23 h(dy/dx) to 140 

link order 

* In the range considered, the denominator is always positive. 

7-69 H sequence, make-up of program and number tapes. H sequence: 

T 27TZ 
2 

liP (See Chapter 2 under the heading sandwich 
3 F 

T z digit.) 

0 
II~ 20 F 

1 F 
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2 II P 3 
T 

D 

4 z 
F 
F 
F 

2-34 (See Chapter 2 under the heading 
sandwich digit.) 

) 
= 1/4 
line feed 

Make-up of program tape: 
P K T 60 K 
I Mll 
P 52 F 
T 76 K 

space 

PZGK 
E 60 K T F 
I H sequence I 
space 

PZGK 
T 70 K Tt/J 
E 60 KIF 

I Master routine I 

space 

PZGK 
E 60 K P F 

!Auxiliary subroutine I 

space 

PZGK 
E 60 K P F 
ID71 
space 

PZGK 
E 60 K P F 
G K T 45 K 
P 12 D 
P4F 
P4F 
P4F 
P2F 
Plt/J 
IG1I 

space 

PZGK 
E 60 K P F 
IR31 

] prosot paramotm for G1 



space 

PZGK 
E 60 K P F 
G K T 45 K 
A 26 D 
P 25 F 
p 45 (j 

P 1552 F 
!PHI 

Make-up of number tape: 

P K E 25 K 
Et/>PF 

08 + 
00000000005 + 

01 + 
4+ 

. etc. 

1 -

EXAMPLES 

23 h 
round-off 
x o 
N 
yo first value 
Yo second value 

Yo last value 
stop 

7-7 Evaluation of a definite integral. 

61 

numbers 

7-71 Statement of problem. The following integral, which occurs in the 
theory of the ionization of an exponential atmosphere by solar radiation, is to 
be tabulated as a function of X and x for X= 90°(-1°)50° and x = 200(20)280. 
The table is to be printed in five columns, each giving values of the integral 
for a fixed value of x. 

lx { sin>..- sinX} 2 
0 exp -x sin A. cosec A. d A.. 

7-72 Method. The integral is written in the following form, in which 
all quantities to be handled in the machine are numerically less than unity: 

where 

-l0
e-24u cosec2 A.dA. 

X ' 

1 . 1 . ' x 2 s mX - 2 smr.. 
u = 24 1 . 1 

2 smr.. 

The integration is performed by Simpson's rule, using subroutine Ql. The 
following subroutines from the library are also used: E3, Pll, T7, and D7. 
In addition a master routine, and a subroutine for computing the integral need 
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to be constructed specially. The integrand rapidly becomes small as A. de­
creases, and the integration is stopped by a conditional operation in the aux­
iliary subroutine, which returns contol to the master routine when u exceeds 
a certain quantity (see note 4 to the specification of Q1 in Part II). 

7-73 Constants: N sequence. 

ON p 200 F starting value of x ·2- 15 

1 p 20 F increment of x·2- 15 

2 (P 200 F) current value of x·2- 15 

3 (P 900 F) current value of 1 OX ·2- 15 

4 p 10 F negative increment of X 
5 p 510 F final value of X plus 1 
6 p 5F 
7 (P F) column counter 
8 K F 14.2-4 
9 p 19 F 

In addition, two long numbers are taken in by subroutine R5 and placed in 60D 
and 620. 

7-74 Master routine. 

Start, 30-0 
1 

20-2 
3 
4 
5 
6 
7 
8 

Q1 9 
10 
11 
12 

P11---13 
14 
15 
16 
17 
18 
19 
20 

15-21 
22 
23 
24 
25 
26 

G 
s 
T 
A 
T 
A 
G 

II(~ 
s 
T 
A 
G 
A 
A 
E 
T 
A 
A 
T 
E 
A 
s 
u 
s 
E 
z 

6 
7 
3 
6 
4 
2 

5 

11 
4 
7 
2 

21 
7 
2 
1 
2 
2 
3 
4 
3 
5 

27 

K 
N 
N 
N 
() 

() 

<P 
F) 
F 
F 
H 
D 
() 

<P 
N 
F 
() 

N 
N 
N 
N 
() 

N 
N 
N 
N 
() 

F 

plant column counter 

plant current value of X 

]calls in Q1, which places integral in OH. 

current value of X 
strip width 
upper limit of integration 

integral to OD 

J calls in P11, which prints value of integral. 

J column count 

jump after 5th column 

]increase x 

accumulator empty: jump to 2 8. 

]increase X 

test for end 
Stop 



25-27 
28 
29 
30 

T 
A 
T 
E 

EXAMPLES 

F clear accumulator 

2 : J reset x 

9 

7-75 Auxiliary subroutine. 

0 
1 
2 
3 
4 
5 
6 
7 
8 

T7- 9 
10 
11 
12 
13 
14 
15 
16 
17 

T7-18 
19 
20 
21 
22 
23 
24 
25 
26 

07-27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

E3-40 
41 
42 

G 
A 
T 
H 
v 
L 
y 
T 
A 
G 
A 
T 
H 
v 
L 
y 
T 
A 
G 
A 
T 
A 
s 
T 
A 
T 
A 
G 
A 
L 
T 
H 
N 
L 
u 
A 
G 
T 
H 
A 
G 
A 
R 
T 

K 
3 F 

51 9 
62 0 

0 
8 F 

F 
4 0 
7 9 
5 rp 
4 0 
2 H 

62 0 
3 N 
8 F 

F 
4 0 

16 9 
5 rp 
4 0 
4 H 
2 H 
4 H 

0 
2 H 
4 0 

25 () 

6 rp 
N 

8 F 
4 0 
4 0 

0 
16 F 

6 H 
8 N 

52 () 

F 
6 H 

38 () 

3 rp 
0 

1 F 
0 

plant link 
(7T/180)·(2 9 /10~ to register 
10>..·(7T/180H2 /10) to accumulator 

J ~>..(radians) to 40 

J calls in T7, which places ~sin>.. in 40 

~sin>.. to 2H 

10X·(7T/180)·(2 9/10) to accumulator 

i X (radians) to 4D 

J calls in T7, which places ~sin X in 40 

1 
2sinXto 4H 

J ~sin X- ~sin>.. to 00 

J isin>.. to 4D 

J calls in 07, which places 
(0.5 sin X - 0.5 sin>..)/(0.5 sinX) in 00 

x·2- 15 to accumulator 

X·2- l0 

-x [(sin X- sin >..)/ (sinX)]2- 10 = -2-6u 

-u to 6H 
14·2 - 4 - u in accumulator 

clear accumulator 

J calls in E3, which places e - 24u in 00 

J ~e-24u in 00 

63 



64 

43 
44 
45 
46 
47 
48 
49 
50 

07-51 
35-52 

53 
54 
55 
56 

Notes: 

ELECTRONIC DIGITAL COMPUTER 

H 
v 
L 
N 
y 

T 
A 
G 

(Z 
T 
A 
A 
T 

(Z 

2 H 
2 H 
1 F 
2 H 

F 
4 0 

49 (} 
6~ 

F) 
F 

51 (} 

9 N 
56 (} 

F) 

J ~sin 2 >-
sin2>- 1 
sin2>- - 4 sin2>-

£sin2A. to 4D 

J calls in 07, which places je-24u cosec2 in 00 

link (E m+2 F) 

J plants E """ F in 56 If 2'u>14 

becomes E m+21 F. Returns control to 
master routine via link order of Ql (see 
note 1). 

1. When 24u exceeds 14 the auxiliary subroutine causes control to re­
turn to the master routine via the link order of Ql. When assembly subrou­
tine Ml is used this is more convenient than returning control directly, since 
it avoids the necessity for more than one entry point in the master routine. 

2. It will be noted that in the auxiliary subroutine all the intermediate 
quantities are placed in separate storage locations. Some of these could be 
written over others, but by placing each in a separate location it is much 
easier to arrange for them to be printed out should this be desirable when 
looking for errors in the program. 

7-76 Make-up of tape. 

PKT64K 

IRs! 
T 620 
07758 06398 + 

500000 + 

XTZ 

IM11 
P 50 F 
T 80 K 

space 

PZGK 
E 64 K T F 

R5 is used to take in two constants and is 
afterwards overwritten 

Conversion factor (degrees to radians) 
29rr/1800; goes into 620. 

Round-off number 5·10- 6 ; goes into 600 
(these numbers appear backwards on this 
tape; see specification of R5, Part II). 



G 16 K 

E64KTF 

JN-sequencej 

space 

PZGK 
T 74 K Tcp 
E64KIF 

I Master routine I 
space 

PZGK 
E64KPF 

JAuxiliary subroutine! 

space 

PZGK 
E64KPF 
T 46 K 
P1cp 

[§!] 
space 

PZGK 
E64KPF 
T 45 K 
P4F 

~ 
space 

PZGK 
E 64 K P F 
T 45 K 

] A 60D 
P 25 F 
p 46 6 
P 1024 F 

I PHI 

space 

PZGK 
E 64 K P F 
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This causes spaces to be left in the s tore 
for 8 long numbers which can be referred 
to by the addresses OH, 2H, . . . , 14H (see 
note 5 in Section 4-62) . 

N parameter for Q1; the H parameter has 
already been set by the assembly subrou­
tine. 

Parameter for E3. 

Parameters for Pll. 



66 

space 

PZGK 
E 64 K P F 

lD7j 
E 25 K 
Eif>PF 

ELECTRONIC DIGITAL COMPUTER 

This program contains a little over 300 orders and pseudo-orders; of 
these only 98 need to be drawn up specially. 

7-8 Program to facilitate the solution of algebraic equations. 

In Graeffe's method for the solution of the equation 

G s-1 s 
0 = a 0 +a1x+ ...• a 8 _ 1 x +a8 x = 0, 

whose roots are A1, A2 •.... A8 , an equation Gm = 0 having roots A i, At .•. 
t..] is formed (t =2m where m is an integer). The program given below is de­
signed to calculate the coefficients of Gm = 0. The subsequent numerical anal­
ysis necessary to find the roots must be performed independently and will pro­
ceed along lines which can only be determined after inspection of the coeffi­
cients of Gm = 0. 

The program uses the floating decimal subroutines Al, A2, and A4 and 
involves four tapes. 

1. Input program tape. This puts into the store a short program which 
causes the coefficients (punched on the following tape) to be read and placed 
in 300D, 302D, ... (300+2s)D. When all the orders on this tape have been read 
the machine is stopped by pressing the stop button, blank tape being under the 
reading head. 

2. Coefficient tape. This tape is placed in the tape reader when the in­
put program tape has been read, and the machine is restarted by the reset 
button. If desired it may be combined with the input program tape. 

3. Master tape. This is taken in by pressing the start button again when 
the coefficients are in the store. It first causes the coefficients of G1 = 0 to 
be computed and placed in (302+2s)D, (304+2s)D, ... (300+4S+2)d. The coeffi­
cients of ~ = 0 are then computed and placed in the locations formerly occu­
pied by those of Go = 0. This process continues, the two sets of locations be­
ing used alternately until the coefficients of Gm = 0 have been computed. The 
machine then stops and two sets of coefficients (those of Gm_ 1 = 0 and Gm = 0) 
are available for printing out. 

4. Printing-out tape. This is placed in the tape reader when the machine 
has stopped and the start button is pressed again. The coefficients of G m- 1 = 0 
and of Gm = 0 are printed out in a single column of 2s+2 numbers. 

Notes: 

1. The program is drawn up in such a way that it can be adjusted to any 
value of s by giving a suitable value to one of the parameters at the head of the 
input program tape. 
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2. If, after the results have been printed out, it is desired to carry the 
root-squaring process further, the master tape, modified by punching P K T 
49 K P 2s Fat its head, may be inserted a second time. The coefficients of 
G 2m-l = 0 and Gzm = 0 will then be computed and may be printed out by means 
of tape 4. 

3. If sufficient storage space is available, it is possible to combine 
tapes 1, 3, and 4. 

in.) 

7-81 Make-up of input program tape. 

p F 
T 50 K 
G K 
T 49 K 
P 2s F 
T 45 K 
P 300 L 
P 2 L 

~ 

L parameter 

equivalent to P 300+2s F; H parameter 
equivalent to P 2S+2 F; N parameter 

7-82 Make-up of coefficient tape. 

p K 

J E 51 K 
z F 

control combin.1.tion initiating the program 

a s 
a s-1 
a s-2 
a s-3 

7-83 Make-up of master tape. (P 2s F is in 49 when this tape is taken 

p K 
T 200 K 
G K 
T 45 K 
p 300 F H parameter 
p 302 L N parameter 
p L M parameter 
p 50 F ..1 parameter 

T 50 K 
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IA41 
T 280 K 

E 
p 

z 
F 

ELECTRONIC DIGITAL COMPUTER 

control combination switching control to first 
order of master routine. 

7-84 Make-up of printing-out tape. (P 2s F is in 49 when this tape is 
taken in.) 

p K 
T 50 K 
G K 

-50 A 49 F J these orders are stored temporarily in 50 to 51 L D 
52 T 49 F 

53 and place P 4s F in 49 (L parameter). 

53 E 25 F returns control to initial orders. 
E 50 K J switch combination p F 
T 45 K 
p 302 L H parameter 
p 4 L N parameter 
p 1 F M parameter 
p 8 F .1 parameter 
p F L parameter 

IA2j 

E 1 z J tape combination initiating printing 
p F program. 

Note: P 4s F will not be in 49 after this tape has been taken in. 

7-85 Master routine. 

G K 
0 s 16 () J set count of squarings 14-1 T 33 F 
2 T 10 D J clear floating decimal accumulator 3 T 9 F 
4 A 4 () J switch to auxiliary subroutine 5 G 200 F 

Aux.-6 A 266 F 

l 7 T 34 F interchange roles of P u D and P v D in 
8 A 267 F 
9 T 266 F 

locations 66() and 676 of auxiliary sub-

10 A 34 F routine. 

11 T 267 F 
12 A 33 F J test for s squrings 13 A 2 F 
14 G 1 () 

15 z F 
16 liP 6 F squaring count 
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( ) 7-8y _!?~sfrlptio~ ~f the auxiliary subroutine. Given the coefficients 
a 0° , af0 , a 2° , •.. , a 5° , of an equation G0 , in loca~Qns (~+)2r)~if = 0, 1C f' 
the subroutine computes and places the coefficients a 0 ! , a).1 , a 2 , ... ,a / 
of the equation G1, in locations (v+2r)D, r = 0, 1, . •. s. The a~ l) are defined 
as follows:* 

2 . 

[ (o ) J - 2 f (-1)r-1 (o) (o) 
a n r=1 3.TI+r a n-r 

(1) 
a n = (i) 

where j = n if n~s-n 
j = s-n if n>s-n. 

7-87 The auxiliary subroutine. Closed; 80 storage locations; working 
positions 30, 31, 32. Preset parameters : 

G K 
T 45 K 

45 H P u F 
46 N P v F 
47 M P 2s F 
48 .1 P w F 

0 
1 
2 

64- 3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

77-17 
18 
19 

T Z 
A 3 F 
T 65 0 
s 71 0 
A 71 0 
U 30 F 
A 66 0 
u 40 0 
u 41 0 
u 55 0 
T 56 0 
A 30 F 
A 67 0 
T 61 0 
S 30 F 
S 30 F 
A 70 0 
E 76 0 
A 30 F 
T 32 F 
T 20 D 

s is the degree of the equation 
address of first order of A4 

J plants link 

J 

l 
J 
J 

set n=O initially 

n·2- 14 to 30 

these orders plant P U+2n D in 40 0, 41 0, 
550, and 560 . 

P V+2n D is formed and planted in 61 0. 

(s-2n)2"" 14 to accumulator 

jump if n~s-n 

J P 2j F is planted in 32 

clear 200 

*See for example Whittaker and Robinson, pp. 106-109, 3rd edition (1940), 
Blackie. It is more convenient to use the relation (i) in the form 

a~ 1 ) = [a~o)y + 2(-l) j Pj , 

where Pj is the jth term of the sequence 
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20 
21 

49-22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

79-35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

21-47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 

T 
E 
A 
A 
T 
A 
A 
T 
A 
s 
T 
s 
E 
T 
A 
A 
T 
A 
G 
E 

(P 
(P 
E 
p 
p 
E 
p 

A 
s 
G 
A 
T 
A 
G 
E 

(P 
(P 
E 

(P 
p 
E 

(P 
A 
s 
G 

(E 
p 
p 
p 

(P 
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31 F 
47 9 
32 F 
68 9 
31 F 
40 9 
68 9 
40 9 
40 9 
68 9 
40 9 
69 9 
78 9 
69 9 

2 F 
75 9 
58 9 
37 9 

L1 
3 L1 

F) 
F) 

3 L1 
72 (} 
20 D 
13 L1 
20 D 
31 F 
32 F 
22 9 
68 9 
69 9 
52 9 

L1 
3 L1 

F) 
F) 

3 L1 
74 9) 
20 D 
13 L1 

F) 
30 F 
70 9 

3 9 
F) 

7TH 
1TN 

2 F 
2 F) 

clear 31 
jump to 479 J modify counter; r.2- 14 to 31 

J form and plant P U+2n+2r D 

J form and plant P u+2n-2r D 

test m, the two-way switch 
jump if r is even 
restore two-way switch 

J Plants P 74 9 in 589 if J plants P 73 9 in r is odd. 
589 if r is even. 

J enter A4 

J an..-r ·:ln-r to floating decimal accumulator 

J -Pr-1 

J Pr to 20D 

J test for r = j 

J reset two-way switch 

J enter A4 

J form [a A 0 ~2 in floating decimal accumulator 

J +2(-l) j pj 

plant a~ 1 ) in (v+2r )D 

J test for last coefficient 

link 
becomes P u D 
becomes P v D 

two-way switch 



70 
71 
72 
73 
74 
75 

16-76 
77 

32-78 
79 

p M 
P 2M 
V 2040 F 
P 16 F 
V 2032 F 
p 73 9 
T F 
E 17 9 
T 69 9 
E 35 9 

EXAMPLES 

becomes P 2s F 
becomes P 2S+2 F 
= -1 in floating decimal representation 
=+2 
=-2 

71 

J control switched to these orders if n~s-n 

J control switched to these orders if r is even 
control being returned to 359 so that P 73 9 

is planted in 589. This corresponds to tak­
ing 2(-1)r = +2. When the last product is 
formed r = j and 2( -1 }i is in location 73 9 
if j is even, and 7 4 9 if j is odd. 



PART II 

SPECIFICATIONS OF LIBRARY SUBROUTINES 

Each subroutine is distinguished by a letter denoting its category and a 
serial number within that category. The categories are as follows. 

Category 

A 
B 
c 
D 
E 
F 
G 
J 
K 
L 
M 
p 

Q 
R 
s 
T 
u 
v 

Subject 

Floating point arithmetic. 
Arithmetical operations on complex numbers. 
Checking. 
Division. 
Exponentials. 
General routines relating to functions. 
Differential equations. 
Special functions. 
Power series. 
Logarithms. 
Miscellaneous. 
Print and layout. 
Quadrature. 
Read (i.e., Input). 
nth root. 
Trigonometrical functions. 
Counting operations. 
Vectors and matrices. 

In the specifications on succeeding pages the following information is 
given in abbreviated form immediately beneath the title of each subroutine: 

1. Type of subroutine, i.e., whether open, closed, interpretive, or 
special. 

2. Restriction on address of first order. If the word "even" appears 
it denotes that the first order must have an even address; if no note appears 
it indicates that the address may be either odd or even. 

3. Total number of storage locations occupied by the subroutine. 
4. Addresses of any storage locations needed as working space by the 

subroutine. 
5. Approximate operating time (not possible to state in all cases). 

The gaps in the numbering within each category correspond to subrou­
tines which have become obsolete. 

72 
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A. Subroutines to carry out floating point arithmetic. 

A1 Input of a sequence of s real numbers in floating decimal form 
(used with A3 or A4), 
Closed; even; 77 storage locations; working positions OD, 4D, 6D, 
and 10D. 

Given a sequence of s numbers (>1) punched in floating decimal form, this 
subroutine assembles them in a standard form* and places them in nD, 
(n+2)D, (n+4)D ..... (n+2s-2)D. 

Preset parameters: 45 [ H \ P n+2s-2 F 
46 N P 2s F 

Notes: *1. For further details see Part I , Section 4-82. 
2. A typical number X·10P, where 256>p>O and 4 >JXIL0.4, is 

punched as: X, sign, p, F. In X the decimal point is immediately after the 
first digit punched. Any number of digits up to ten may be punched for X. 
More than ten will exceed the capacity of the accumulator. 

3. The numerical part of each number is eventually rounded off 
to 24 binary places. 

A2 Print sequence of s floating decimal real numbers in a preset 
layout (used with A3 or A4). 
Closed; even; 111 storage locations; working positions OD, 4D, 8. 

Prints the sequence of s numbers packed in floating decimal form in storage 
locations nD, (n+2)D, (n+4)D .... (n+2s-2)D. Layout: numerical part printed 
to d digits preceded by sign and followed, after one space, by the positive* 
integral exponent (up to five figures with suppression of nonsignificant zeros). 
Two spaces separate columns of complete numbers. Decimal point in numeri­
cal part is after first digit printed. 

Preset parameters: 45 H P n+2s-2 F 
46 N p 2s F 
47 M p c F number of columns ($.4) 
48 .1 p d F number of digits 
49 L p x F/ D = q-2-16 

Notes: 1. Teleprinter must be on figure shift. 
*2. A2 prints out positive exponents only. To ensure this pro,ision 

is made whereby all exponents may be increased by a preset amount, q, be­
fore printing. 

3. No round-off is provided. Any number of figures may be printed. 
4. c(d+9) ~ 72. 

A3 Special arithmetical operations on real numbers in floating decimal 
form, 
Closed; even; 126 storage locations; working positions OD, 4D, 6D, 
8D, 10D, 12D; time: part 1 = 85 msecs; part 2 = (64+24q) **msecs. 

Enables special arithmetical operations to be carried out on real numbers 
expressed in standard floating decimal form.* A3 is in two parts and has two 
entry points p and P+ 76, where p is the location of the first order. Part 1 is 
entered by: 
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m Am F 
m+1 G p F 

and executes the arithmetical operation: xy + C(A) to A, where A refers to a 
floating decimal "accumulator" in the store and x andy are stored in rD and 
sD respectively. 

Part 2 is entered by: 
m A m F 

m+l G P+76 F 

and assembles C(A) in standard form" which is then placed in tD. r, s, and t 
are specified by parameters P r F/D, P s F/D, and P t F/D which may refer 
to either long or short floating numbers. These parameters are stored 1n 
preset locations. 

Preset parameters: 45 1 H I P a F 46 N P b F 
47 M P c F 

address of P r F /D 
address of P s F /D 
address of P t F /D 

Notes: *1. See Part I, Section 4-82. 
2. No more than two "Part 1" operations may be carried out in 

succession without following a "Part 2" operation. 
**3. q is the number of significant zeros arising from cancelation in 

the sum in the accumulator. 
4. See Part III for detailed program. 

A4 Special arithmetical operations on real numbers in floating decimal 
form. Interpretive version of A3. 
Interpretive; even; 150 storage locations; working positions OD, 4D, 
6D, SD, 10D, 12D; time: part 1 = 100 msecs; part 2 = (80+24q)msecs. 

This subroutine consists of A3 preceded by a supplementary subroutine which 
enables it to be used with program parameters. Floating point operations 
using this subroutine can then be coded as follows: 

m 
m+1 

A m F 
G p F calls in A4. 

Thereafter, when required, control may be switched to Part 1 (see AS) by 

m+2 E P+3 F 
m+3 P r F/D* 
m+4 P s F/D* 

Control will afterwards be returned to m+5, whence a further Part 1 operation 
can be called in by another triplet of orders similar to those above or, alterna­
tively, a Part 2 operation may be initiated by 

m+5 E P+13 F 
m+6 P t F/D* 

Control will then be returned to m+7. 

*p r F/D, etc., refer to either short or long floating numbers. 
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A5 Special arithmetical operations on complex numbers in floating deci­
mal form. 
Closed; even; 206 storage locations; working positions OD, 40 - 180; 
time: Part 1 = 150 msecs; Part 2 = (90+31q)* msecs. 

Similar to A3 but operates on complex numbers expressed in standard form 
(see Part I, Section 4-83). Part 1 carries out the operation 

z1z2 + C(A) to A, 

where Zl is stored in rO and (r+2)0 and z 2 in sO and (s+2)0. Part 2 assembles 
C(.\) in standa:rd form and transfers it to tD and (t+2)0. 

Preset parameters: 45 1 H I P a F 46 N P b F 
47 M P c F 

address of P r F 
address of P s F 
address of P t F 

Notes: 1. Not more than two Part 1 operations may be carried out without 
following with a Part 2 operation. 

*2. q is the number of multiplications by 10 which are necessary when 
assembling the number to bring the modulus within the standard range. 

3. A5 is entered in the same way as A3, Part 2 being entered at P+128. 
4. See Part III for detailed program. 

A6 Input of a sequence of complex numbers in floating decimal form 
(used with A5 or AB). 
Closed; even; 98 storage locations; working positions 00, 40, 60, 
140, 160, 180. 

Given a sequence of s complex numbers (>1) punched in floating decimal form, 
A6 assembles them in standard form* and places them in nD, (n+4)0, (n+B)O, 
... (n+4s-4)0. 

Preset parameters: 45 I H I P n+4s-4 F 
46 N P 4s F 

Notes: *1. See Part I, Section 4-83. L!. l 
--- 2. A typical number (X +iY )·10 , where 4>irX~ + Y~~0.4 and 
20472.p2.0, is punched as Xo, sign; Y0 , sign; p. In X0 and Y0 the decimal point 
is immediately after the first digit punched. Any number of digits up to ten 
may be punched for X0 andY 0 ; more than ten will exceed the capacity of the 
accumulator. 

3. Xo and Yo are eventually rounded off to 28 binary places. 

A 7 Print sequence of s floating decimal complex numbers (used with 
A5 or AS). 
Closed; even; 125 storage locations; working positions 00 and 40. 

Prints the sequence of s complex numbers packed in floating decimal form in 
storage locations nD, (n+4)0, (n+B)O, ... (n+4s-4)0. Layout: 2 columns of 
complete numbers. Each number consists of ± real part, space, ± imaginary 
part, space, positive* exponent. 

Preset parameters: 45 
46 
47 
48 

H P n+4s-4 F 
N P 4s F 
M P x F/0 
L1 P d F 

address of last number of sequence 
s numbers 

2-16 
= q. 
number of digits. 
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Notes: 1. Figure shift is called during input. 
*2. As in A2, provision is made for the addition of a preset amount q 

to the exponent of each number before printing. 
3. No round-off is provided. Any number of digits may be printed. 
4. c(d+9) ~ 72. 

AS Special arithmetical operations on corr_plex numbers in floating 
decimal form. Interpretive version of A5. 
Interpretive; even; 230 storage locations; working positions OD, 4D 
to 18D; Time: Part 1 = 165 msecs, Part 2 = 105 + 31q msecs. 

This subroutine consists of A5 preceded by a supplementary subroutine which 
enables it to be used with program parameters. Floating point operations 
using this subroutine can then be coded as follows: 

m I Am F 
m+1 G p F calls in A8 

Thereafter, when required, control may be switched to Part 1 (see A5) by 

m+2 1 E P+3 F 
m+3 P r F/ D* 
m+4 P s F/ D* 

Control will afterwards be returned to m+5, whence a further Part 1 operation 
can be called in by another triplet of orders s imilar to those above; alterna­
tively, a Part 2 operation may be initiated by 

m+5 J E P+13 F 
m+6 P t F/ D* 

*p r F/ D, etc., may refer to either short or long floating numbers. 

A9 Input of a sequence of numbers in floating decimal form during in­
put of orders (used with All) . 
Special; even; 31 storage locations. 

The numbers are punched on a separate data tape in the following form: 
character representing exponent; sign; numerical part (the decimal point 
being after the first digit). For example, 

512 would be punched as W + 512 or 2 + 512 = lo2(5.12), 
-.0012 II II II " B - 12 = 10-3 (1.2). 

The fir s t number in the sequence is preceded by Z T X. After the subroutine, 
T m D is punched, followed by the data tape which is copied in the reverse 
direction. The numbers are then placed in the store in floating decimal form 
in storage locations mD, (m-2)D, etc., so that mD is the location of the num­
ber originally punched last. 

Accuracy: the numerical pa rt of each number is represented by 23 
binary digits - equivalent to almost 7 decimal digits. 

Notes: R9 must be in the s tore whim A9 is read. 

A10 Print single floating decimal number (used with All). 
Closed; even; 63 storage locations; working position, 4D; time = 
2 sees per number. 
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Prints the signed exponent followed by the signed numerical part of the num­
ber stored in floating decimal form in OD. Each number is printed as: nega­
tive sign, or space; exponent (2 figures); 2 spaces; negative si.gn, or space; 
integer part (1 figure); space; 6 decimal figures. 

Accuracy: the number is rounded off to 7 figures (including integral 
part). 

Notes: 1. If the numerical part is exactly 10 it will be printed as# 000000. 
2. The last order on the tape is the digit layout parameter for the 

numerical part (as in Pll), and may be altered if required. 
3. Normally, before the number is printed, carriage return and line 

feed will occur. They may be omitted by entering the routine at its third order. 
One space only is printed after each number. Not more than four numbers may 
be printed on one line. 

All Arithmetical operations on real numbers expressed in floating 
decimal form. 
Interpretive; even; 128 storage locations; working positions OD*, 
and H and N for floating accumulator; time, see Note 1. 

Operations: All carries out the operations specified individually by 
the program parameters according to the following code: 

Program 
parameter 

A m F/D* 

B m F/D* 

v m F/D* 

T m F/D 

E m F 

*mS.511 

Operation 

add to the number in floating decimal accumulator the 
number represented by C(m). 

subtract from the number in floating decimal accumulator 
the number represented by C(m). 

multiply the number in floating decimal accumulator by 
the number represented by C(m). 

transfer the number in floating decimal accumulator to 
S(m), and clear the accumulator. 

switch control to m with accumulator clear (previous 
parameter need not be T). 

Representation of numbers. Each number is expressed in the form 
a•10P, where a is the numerical part and p the exponent (an intege~l In the 
store the number is represented by the long or short number a·2-~ + p·2- 6• 

The routine uses positions H (long) and N (short) as a "floating decimal accu­
mulator," or "f.d.a.," in which the above numbers would appear as -a·2- 11 

in Hand p·2 - 14 inN. 

Range of values: In the f.d.a. IPI<16000 approx. and -2048~<2048. In 
the store -63S.p<63 and lal$.10, but when a number is transferred to the store 
from the f.d.a. it is always represented in such a way that either 1 < lal$.10, or 
a = 0 and p = -63. 

Capacity of registers. If a T parameter is read, and the number in the 
f.d.a. exceeds 10 6~, the machine will normally come to a dynamic stop. If 
this is undesirable, the preset L parameter E 56 0 may be replaced by any 
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E order transferring control to a suitable point in the store in the event of 
exceeded capacity (the accumulator not being empty). 

If the number in the f.d.a. is less than or equal to 10-63 , a T parameter 
will place the representation of zero in the store (0.10-6~. 

It is possible to exceed the capacity of the numerical part of the f.d.a. 
without the number actually represented by the f.d.a. exceeding the range of 
possible values. The rules for avoiding this are as follows. After a T param­
eter, JaJ: 0; an A orB parameter may increase Ia\ by 10, and a V parameter 
may multiply Ia I by 10, in the worst cases; hence the sequence of parameters 
should be such as to ensure that a can never reach 2048. 

Accuracy: when using long numbers, a has between 23 and 27 binary 
digits, that is, 7 or 8 decimal digits. When using short numbers, a has be­
tween 5 and 9 binary digits, that is, about 2 decimal digits. 

Notes: 1. Times of operation: 

Parameter 

A 
B 
T 

v 
E 

Time in sees 

.066 

.066 
,050 + m(.015), where m is the number of deci­

mal shifts necessary to convert the 
number to the form required in the 
store • 

. 050 
,012 

2. OD may be used as a temporary store only if no A, B, or V param­
eters are used between planting and using; for example, 

TD T D 
AD 

or T 12 D 
B D is permissible, 

but not T D 
A4D 
B D 

Preset parameters: 

H p s D location of numerical part of f.d.a. 
N p t F location of exponent of f.d.a. 
M p 103 9 

J .:1 p 9 set and used by subroutine 
L E 56 9 

B. Subroutines to carry out arithmetical operations on complex numbers. 

B1 Complex Operation No. 1. 
Interpretive; 16 storage locations; working positions hD, (h+2)D; 
time : 21 msec per order. 

This subroutine is entered in the usual manner and executes the orders follow­
ing the entry, operating on long or short complex numbers. Each order oper­
ates on the complex number C(n) + iC(n+2), whtlre n is the address specified 
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in the order. This subroutine enables operations to be carried out on complex 
numbers by the following orders: A, S, T, U, L, R. Multiplication by a real 
constant (placed in the multiplier register before the subroutine is entered) 
can also be used. 

Preset parameter: 45 I H I PhD (h even) 

Notes: 1. Shifting, up to 6 places must be effected by a series of single or 
double shifts (i.e., L D or L 1 F). A shift of 7 places or more may be obtained 
by a pair of orders, e.g., L 2n-G F, L(2n-s - 2) F. 

2. Y order is meaningless. 
3. T D, U D must not be used, since they will destroy the contents 

of 20. 
4. Exit from the subroutine is made by an E order immediately fol­

lowing a T order. Control is transferred to the address specified in the E 
order. 

5. Care should be taken that the first time B1 is called in storage 
locations hD and (h+2)D are cleared. 

B2 Complex Operation No. 2. 
Interpretive; even; 54 storage locations; working positions 0 and hD 
to (h+10)D; time = approx. 75 msec per order. 

Similar to B1 but makes available the following orders: A, S, T, U, V, N, Y, 
and right or left shift of one or two places. 

Preset parameters: 45 I H I P h D (h even) 
46 N is also used by subroutine 

Notes: 1. There is no H order. The role of "complex multiplier register" 
is undertaken by storage locations hD and (h+2)D, which may be filled by the 
order T (or U) hD. 

2. See also notes 1, 3, 4, and 5 for subroutine Bl. 
3. See Part ill for detailed program. 

C. Checking subroutines. 

C1 Cycle check, examines one storage location. 
Special; even; 44 storage locations; time = about 2.5 sees per 
number. 

May be applied to a program in order to print C(hD) immediately before obey­
ing the order in n. Numbers are printed in a single column; printing ordered 
by the master routine occurs to the right of the previous check number. The 
accumulator must be empty before C(n) is obeyed. C(n) must not be altered 
by the original program or used in any way other than as an order. 

C7 Check function letters, with localized print suppression. 
Special; 61 storage locations; time, see Note 5. 

Performs a given program order by order, and prints the function letters of 
those orders which are drawn from certain specified parts of the store; other 
orders are obeyed silently. The store may be divided into four regions, orders 
in two of which have their function letters printed. 
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Preset parameters: 45 H p b F 

J 46 N P (c-a) F See Note 1 
47 M P (c-b) F 
48 .1 p () print lowJ or .1 () print high See Note 1. 
49 L IP m F start at m 

Notes: 1. 
as follows: 

The regions of the store are specified by the parameters a, b, c 

(i) n<a 
(ii) ~n<b 

(iii) b~n<c 
(iv) ~ 

The subroutine will either "print low," i.e., print function letters of orders 
in (i) and (iii), or "print high," i.e. , print function letters of orders in (ii) 
and (iv). 

2. Print routines in the original program must be arranged to lie in 
regions from which the function letters are not printed. Characters printed 
by such routines will appear as figures. 

3. A new line of printing is begun at each transfer of control; a clear 
line is left where orders have been obeyed silently unless such orders them­
selves cause printing to appear on this line. 

4. C7 only tests the locations of orders at each transfer of control, 
so that if control enters a new region during a consecutive sequence, the mode 
of operation does not change immediately. 

5. Speed of operation is about 5 orders per second when printing func­
tion letters, 30 orders per second when suppressed. 

6. C7 must be placed at the end of the orders on the tape. After being 
read it will direct control to itself and commence checking at order m. 

7. See Part III for detailed program. 

C8 Numerical check, with delayed start and printing from a restricted 
region of the store. 
Special; *even; 41 + 32 storage locations; time = 200 msec per digit. 

May be applied to a program in order to print C(Acc) before obeying T orders 
specifying addresses less than a certain number. The main program is obeyed 
at full speed until it encounters the order in m when checking commences. The 
value of m must be chosen so that C(Acc) = 0 before the order in m is obeyed. 
A new line of printing is started at each transfer of control. In general C8 
should be used with programs in which all printing is done by a subroutine; 
printing is suppressed, using a dummy print routine, and part of C8 is written 
over the printing subroutine. 

Preset parameters: 45 H PhF location of print subroutine 
46 N PnF location of store to hold part of 

C8 (n even) 
47 M PmF start address 
48 .1 PdF number of digits 
49 L PsF division of store. 
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Notes: *1. C8 has two parts, one of which, 41 orders long, is written over an 
existing print routine. The location of the first order of the other part (32 
orders long) must be even. 

2. C8 is to be copied onto the tape after the program to be checked. 
T 45 K is punched, followed by the parameters and C8, the orders of which 
are then placed in the specified positions. The order directing control to the 
main program must be placed immediately after C8. 

3. C8 prints C(Acc) only if the address specified in the T order is 
less than s. 

C9 Check function letters with delayed start and suppression of check 
during closed subroutines. 
Special; 48 storage locations; time =about 1/4 sec per order printed. 

Similar to Cll but has a delayed start and will cease checking during each 
closed subroutine. Cannot be applied to a program which contains a subroutine 
with more than one program parameter. 

C10 Numerical check with delayed start and suppression of check during 
closed subroutines. 
Special; even; 37 + 51 storage locations; time = 1/5 sec per digit 
printed. 

May be applied to a routine in order to print C(Acc) before obeying T orders. 
It has a delayed start and will cease checking during each closed subroutine. 
It may be used only on programs containing subroutines with at most one pro­
gram parameter. If the program has the order A n F in S(n) for a purpose 
other than entry to a closed subroutine, C10 will fail at that point. 

Preset parameters: 

:~ I ~ I ~~~ 
47 M PmF 

see Note 1 
number of digits to be printed. 
address of order at which checking 

starts. 

Notes: 1. Part of the subroutine, 51 orders long, is placed in locations h to 
(h+50) and may be written over a print routine in the master routine in which 
case printing from the master routine will be suppressed. 

2. A new line of printing is started at each transfer of control. 
3. A line feed occurs when a closed subroutine is encountered. 
4. The address m of the order at which checking starts must be 

chosen as described in Note 2 of C5. 
5. The first number printed by C10 is the numerical representation 

of the order at which checking starts. 
6. C10 must be placed at the end of the tape and followed byE p K P F, 

directing control to the master routine. 
7. A T order immediately following a closed subroutine with no pro­

gram parameters will not cause C(Acc) to be printed. 
8. See Part III for detailed program. 

Cll Check function letters. 
Special; 32 storage locations; time =about 1/5 sec per order. 

Obeys a given program order by order and prints the function letter of each 
order. Cannot in general be used on a routine where printing occurs. 
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Notes: 1. A new line of printing is begun at each transfer of control. 
2. U used on a print routine employing an F order Cll will behave 

as though the F order always reads from the teleprinter the symbol F. If 
the original program calls for a figure shift, the following printing will appear 
as figures. Otherwise symbols printed by the original program will appear as 
letters following the "0" which indicates the print order. 

3. Cll should be placed at the end of the orders on the tape, (the final 
E m K P F being deleted) and followed byE m F. Cll will then begin to obey 
the original program at the order in location m. 

C12 Check function letters with dummy print routine and delayed start. 
Special; 40 storage locations. 

The original program operate_s at full speed until the order h is obeyed for 
the nth time. Checking then commences, and function letters are printed. 
h must be so chosen that the accumulator is always empty before C(h) is 
obeyed and C(h) is not altered by the original program or taken into the arith­
metical unit before checking starts. There is a dummy print routine at the 
head of C12 which returns control to the master routine without printing. 

Notes: 1. C12 must not be fed into the machine before C(h). 
2. Figure shift must not be called for by the original program, ex­

cept in a print routine which is overwritten by C12. Print routines calling for 
figure shift during input must not be placed after C12 on the tape. 

3. The dummy print routine destroys C(O). When checking, it appears 
as ATE 

E 
*4. If the original print routine had a normal program parameter, in­

sert A 2 F in front of G K T 45 K. The whole routine now occupies 41 positions, 
and the dummy print routine appears when checking as A A T E 

E 
For two or more program parameters, insert A 2 F the corresponding number 
of times. 

5. The program is started in the usual way byE m K P F. 

Preset parameters: 45 J H [ P h F position at which checking starts 
46 N P n F delay 

D. Division subroutines. 

D3 Division, small. 
Closed; 20 storage locations; time = (22 m + 105) msecs, where 
2-m-l~IC(4D)I~2-m . 

Forms C(OD)/C(4D) and places the result in OD. Slower than D7 but occupies 
less space. 

Repetitive process: 

a n+l = -anCn + an 

Cn+l = -c~ 
stop when Cn = 0. 

a o = dividend 

c0 + 1 = divisor 



SPECIFICATIONS OF SUBROUTINES 83 

D4 Division, small, positive divisor. 
Open; 11 storage· locations, working position OD; time = (22m+108) 
msecs , where 2-m- l~ lc (Ace): S.2 - m. 

Forms C(hD)/C(Acc.) , where 1> C(Acc)> O, and places result in hD. A special 
case of D3. 

Preset parameter: 45 I H I P h D 

Notes : 1. The number of significant figures in the quotient is one less than 
the smaller of the numbers of significant figures in C(hD), C(Acc). 

2. The left-hand half of the accumulator is clear at the end of the 
process, but the right-hand half is not. O<C(Acc)<2 - 34 • 

3. See Part III for detailed program. 

D6 Division, accurate, fast. 
Closed; 36 storage locations; working positions 6D and 8D; time = 
(10m+120)ms ec s , where 2 - m- l S.IC(4D) I< 2- rn. 

Forms C(OD)/ C(4D) where C(4D) f 0 and f -1, and places result in OD. 

Accuracy: maximum error ± K·2- 35 ±:z-34 , where K = quotient. 

Note: See Part III for detailed program. 

D7 Division, rapid. 
Closed; 26 storage locations; time = (12m+105) msecs, where 
2 - m- 1S.Ic(4D)I<z-m. 

Forms C(OD)/C(4D) and places the result in OD. Uses same repetitive proc­
ess as D3. 

Notes: 1. The right-hand side of the accumulator is not cleared at the end 
of the operation, i.e., OS.C(Acc)<2-34 • 

2. At the end of the process -2-34 LC(4D)> -2-17 • 

E. Exponential subroutines. 

E2 Exponential, slow. 
Closed; 19 storage locations; working positions OD and 6D; time = 

930 msecs. 

Forms exp [C(4D)] - 1 and places the result in 4D. -1~C(4D)<.693. 

Accuracy: probable error = :z-33 • 

Note: See Part III for detailed program. 

E3 Exponential, large range. 
Closed; even; 56 storage locations; working position 4; time = 

(244+19p) msecs. 

Forms exp (2Py), where y = C(R)S.O and p21. Places result in OD. 

Preset parameter: 45 I H I P p F 

Accuracy: the greatest error occurs when exp (2Py) is nearly equal to 
unity; the error is then less than (2 p- l + 1)·2- 34 • The error diminishes rapid!~ 
as exp (2Py) decreases. For small values of exp (2Py) the error is less than 3·2" ~ 
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E4 Exponential, fast (used with R9) . 
Closed; even; 36 storage locations; time = 120 msecs. 

Forms exp (x) where x = C(R) and -l~x::;.o. Places result in OD. R9 must be 
in the store while E4 is being read. 

7 
Accuracy: maximum error is 2-34 + 2-35 L I xi r. 

r =O 
Note: See Part III for detailed program. 

F. General routines relating to functions. 

F1 Interpolation in a table of long numbers. 
Closed; even; (68 + 2b) storage locations; working positions OD, 10D, 
12D, . . . , (8 + 2b)D; time = (60+24b2 ) msecs. 

Given in consecutive long storage loca tions, a table of a function at unit inter­
vals of the argument, with the entry corresponding to zero argument specified 
by a program parameter, the subroutine calculates the value of the function 
for argument 2 C(4D) and places it in 10D. The number of entries over which 
the interpolation is made and their positioning with respect to the argument 
may be specified. 

Preset parameters: 45 H p 2b ~ ] see Note 1. 46 N p a 
47 M p 2n-2 F 
48 .6 J 49 L are also used by the subroutine 
50 X 

p I A p F J Orders calling in F1 
P+1 G sF 

Program parameter . • . P+2 A mD where f(O) = C(mD) 

Accuracy: Maximum error is ±2-36b(b+1) with probability 2 - b (b+l)/2. 

R.M.S. value of error is 2-35b. 

Notes: 1. The interpolation uses b values of the function of which there are 
a with arguments less than the integral part of the argument. b~ll. 

a = 0, b = 2, corresponds to linear interpolation. 
2. See Part III for detailed program. 

F2 Solution of f(x) = 0, or inverse interpolation (second order process). 
Closed; 58 storage locations; working positions 4D, (h+4)D, (h+6)D, 
(h+8)D. 

Places a solution of f(x) = 0 in hD. f(x) must be defined by an auxiliary subrou­
tine. Two trial values, x 1 and x2 , must be placed in hD and (h+2)D before F2 
is called in. They must be such that f(xl) and f(xz) have opposite signs. The 
solution will lie between x 1 and x2 • 

Preset parameters: 45 1 46 
47 

HIp hD 
N P n F 
M is also used by the subroutine. 
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Notes: 1. The auxiliary subroutine must be of the normal closed type com­
mencing at n. It should place f [C(hD)) in OD, leaving C(hD) unaltered. 

2. If f(x 1 ) and f(x2 ) have the same sign, F2 will place x 2 in hD and 
the accumulator will contain 2-35 • 

3. 4D may be used by the auxiliary subroutine, but not (h+2)D to 
(h+8)D. 

4. For inverse interpolation F1 can be used by the auxiliary. 
5. If x is not required to an accuracy better than t2m- 33 , where m.$.10, 

order 52 of F2 may be replaced by R 2n' F. This will save time, but the R.H. 
half of the accumulator may not be empty on exit. 

6. See Part III for detailed program. 

F3 Differencing and checking subroutine No. 1. 
Closed; 26 storage locations + 12 for numbers; working position 4D; 
time = 36 msecs. 

This subroutine calculates the first, second, third, and fourth differences of 
successive values of a function and checks that the magnitude' of the fourth 
difference does not exceed a specified quantity. The current values of the 
function and the first 4 backward differences are held in mD, (m+2)D, (m+4)D, 
(m+6)D; each time the subroutine is called in C(OD) is taken as the new cur­
rent value of the function and the differences are all advanced one step. If the 
fourth differences exceed C(m+10)D in magnitude a"?" is printed. 

Preset parameter: 45 I H I P m D 
or P m F 

Notes: 1. The subroutine may be used to handle short numbers by punching 
P m F instead of P m D for the preset parameter. Differences of successive 
values of the function, the current value of which is placed in OD, will then be 
computed and placed in (m+2), (m+4), etc.; a"?" will be printed if the fourth 
differences exceed C(m+10) in magnitude. 

2. See Part III for detailed program. 

F4 Differencing and checking subroutine No. 2. 
Closed; 32 storage locations + 16 for numbers; working position 4D; 
time 42 units. 

Similar to F3 but calculates the first, second, third, fourth, fifth, and sixth 
differences of successive values of a function and checks that the magnitude 
of the sixth difference does not exceed a specified qua ntity. 

Preset parameter: 45 I H I P m D address of current value of function. 

F5 The minimization of a positive function of n variables using a digital 
process. 
Closed; 44 storage locations; working space, OD , OM, 2M; time = 

approx. 500n+50n· t msecs, where t = time for auxiliary subroutine. 

Given a set of n va riables in storage locations aD, (a+2)D , (a+4)D, ... , (a+2n-2)D 
the subroutine will continually adjust these variables, by the method described 
below, to seek a minimum of a positive function f of these variables. At each 
stage f is calculated and placed in OD by an auxiliary closed subroutine whose 
first order is in OL1. 
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Method: 1. The first variable is successively decreased by an amount h until 
the calculated values off begin to increase. 

2. The smallest value off is chosen and the process 1 repeated for 
each of the other variables in turn. 

3. The processes 1 and 2 are repeated, using -h instead of h. 
4. The processes 1, 2, and 3 are repeated, using -( -h)/ 8 as deere-

ment. 
5. When the decrement h/sm becomes less than 2-34 , the process 

terminates. 

Accuracy: depends on the function and the starting value. For "well­
conditioned'' functions the subroutine will find a value such that if any one of 
the variables is adjusted by 2-34 the value off will not decrease. 

Note: 1. For maximum accuracy, h should be chosen so that the final decre­
ment is -2-34 , that is, h should be of the form 2- 1- 3P • The library tape uses 
h = 2-4 , specified by -h = V F, as the last order of the subroutine. If an ap­
proximate solution is known and used as starting values, h should preferably 
be of the order of the initial errors. 

Preset parameters: 45 H p a+2n-2 D last variable 
46 N p 2n F number of variables 
47 M p s D working space 
48 L1 p t F location of first order of 

auxiliary subroutine 

G. Subroutines for integration of ordinary differential equations 

Gl Simultaneous first-order differential equations by modified Runge­
Kutta process; single step, long numbers 
Closed; even; 66 storage locations; working positions OD, 40, and 
6D; time 0.21n seconds per step + time of auxiliary. 

Each time this subroutine is called in it will advance the values of the variables 
by one step. It requires an auxiliary closed subroutine to calculate the first 
derivatives y' of all the variables from given values of the variables y. For 
detailed description of the process, see Part I, Sections 4-71, 4-72, and 4-73. 

Preset parameters: 45 
46 
47 

48 

49 
50 

HIP a D 
N P 2n F 
M P b-a F (if a<b) 

olr V(2048 - a+b)F (if a>b) 
L1 P c-b F (if b<c) 

olr V(2048 - b+c)F (if b>c) 
L P 2m- 2 F 
X P d F 

Accuracy: the truncation error in one step is of the order h5 • For a 
small set of well-behaved equations its magnitude is roughly 10-2 h5; for large 
sets or difficult equations it may be greater. Rounding-off errors accumulate 
at a rate corresponding to the keeping of (34+m) binary digits. 
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Notes: 1. The variables yare stored inn consecutive long storage locations, 
the last of which is aD. 

2. The auxiliary subroutine is of the normal closed type and com­
mences at d; it should place the quantities 2mhy ' in n consecutive long storage 
locations, the last of which is bO. 

3. A further n long storage locations, the last of which is cO , are 
required by Gl to hold the quantities 2mq. At the beginning of a range these 
must be cleared. 

4. If the independent variable is required it may be obtained by in­
cluding an extra variable with the corresponding value of 2mhy' = 2mh. The 
latter quantity may be set once and for all at the beginning of the range; it 
will not be disturbed. 

5. m should be chosen so that the largest 2mhy' is just within the 
capacity of the accumulator. 

6. Gl uses OD, 40, and 60, but these may also be used by the auxil.:.. 
iary subroutine. 

7. See Part III for detailed program. 

G2 Simultaneous first-order differential equations by Runge-Kutta 
process; single step, short numbers 
Closed; even; 68 storage locations; working positions 0, 1, 4; time = 

0-21n seconds per step+ time of auxilia ry. 

Similar to Gl, but works with short numbers. 

Preset parameters: 45 
46 
47 

48 

~ I ~ ~ ~ J note difference from Gl 

M P b-a F 

o[r V 2048-a+b F 
Ll P c-b F 

olr V 2048-b+c F 
49 L P 2m-Z F 
50 X P d F 

Accuracy: The truncation error in one step is of the order h 5• For a 
small set of well-behaved equations its magnitude is roughly 10-2 h5 ; for large 
sets or difficult equations it may be greater. Rounding-off errors accumulate 
at a rate corresponding to the keeping of (16+m) binary digits. 

G3 Integration of y" = f(x,y) by fifth-order process. 
Closed; 45 storage locations; working positions 00, 40, 100. 

Each time this subroutine is called in it advances the integration by one step. 
A separate subroutine is needed to calculate f(x,y). 

Preset parameters: 45 / H j P n 0 (n must be even) 
46 N P m F 

A . ( I V I V) 4/ O ccuracy: truncation error = Yo - Yn h 24 ove r range Yo to Yn-

Notes: 1. Apart from this subroutine, 11 long storage locations must be pro­
vided, beginning with nD. 
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2. An ordinary closed subroutine, starting in m must calculate 
f[C(n t-10)D, C(n+18)D] and place it in (n+20)D. 

3. The initial values must be placed in the following long storage 
locations at the beginning of the integration: 

H Yl 2H 4H 
11 

Yl 6H 

10H Xl 12H h(integration step) 14H 

16H 1/12 = 0.083. 

4. After using the subroutine, corresponding values of x andy will 
be found in (n+10)D and (n+18)D respectively (i.e. , in lOH and 18H). 

5. Storap- e locations OD, 4D, 10D are used. The auxiliary subroutine 
can use OD and 4D but not 1 OD. 

6. The time taken depends on the number of iterations necessary. 
It equals p(52 + auxiliary time)+ 15 msecs , where p is the number of itera­
tions, usually about 3. 

7. See Part III for detailed program. 

G4 Integration of y 11 = F'(x,y) by sixth-order process 
Closed; 47 storage locations. 

Similar to G3 but uses a sixth-order process. 
II 2 n 2 

Y2 = Yl + dM+ (y2 + 6 yd12)h 

Tl 2 n 
Y2 = f(x 2,y2 - h 62 Yl/240) 

J. Subroutines for calculating special functions 

J1 Calculation of Legendre polynomials 
Closed; even; 36+2q storage locations; working positions OD, 
(4+2q)D, (6+2q)D; time = 52(q-1) msecs. 

Calculates ~P0 (2x), ~P1 (2x), .... ~Pq (2x), where x = C(6D) and places them in 
4D, 6D .... (4+2q)D respectively each time the subroutine is called in. 
-t~x.SJ, q~lO. 

Preset parameters: 45 1 H I P 2q D I the subroutine calculates Po , 
46 N . P 2q 9 P1, .. . P q. 
47 M is also used by the subroutine. 

Accuracy: maximum error 2-34 [r + ~4x)~'- 2] approx. 
rms value of error is 2r-v5( 2xt- 2 approx. 

Note : See Part III for detailed program. 

K. Subroutines for the summation of power series 

K1 Summation of a power series 
Closed; 17 storage locations; time = (27+18n) msecs. 

Calculates F n(x) = aoxn + alxn-l + ..... +an where xis C(R) and ar = 
C(m+2r)D and places F n(x) in OD. 
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45 I H I P 2n F 
46 N A m+2n D (m must be even) 

Accuracy: round-off error'~2- 3 5 [ (1 - Jx nJ )/ (1- Jx J)] 

Note: See Part III for detailed progra m. 

K2 Summation of a complex power series. 
Closed; 30 storage locations; time = (57+48n) msecs . 

n 
Calculates F n(z) = r~ Ar zn-r = X + iY where z = C(SD) + iC(10D) and 
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Ar = C(m+4r)D + iC(m+4r+2)D, r = 0, 1, 2, .. . , n. Places X in 40 andY in 60. 

Preset parameter s : 45 I H I P 4n F 
46 N P m H (m must be even) . 

K3 Summation of a power series of even terms. 
Closed; 27 storage locations; working position 6; time = (27+20r) 
msecs. 

Calculates F(x) = C(nD) + C [(n-2)D] .. x2 + ... .. C[(n-2r+2)D]·x 2 (r-l ) where 
x = C(4D), and places F(x) in 00. 

Program parameters : J 
Accuracy : See K4. 
Notes: 

K4 Summation of a power series. 
Closed; 22 storage locations; working position 6; time = (15+20r) 
msecs . 

Calculates F(x) = C(nD) + C [(n-2)D]·x + .. . C[(n-2r+2)D]·xr-l where x = C(4D), 
and places F(x) in OD . 

Program parameters: 

p 
P+1 
P+2 
P+3 

A p 
G s 
A n 
P 2r 

~] Orders ca lling in K4 

D 
F 

Accuracy : maximum error is ±2- 3 5 0- \xn/ (1 -lx l) 

Notes : 1. C(4D) remains unchanged. 
2. Since C(R) = C(4D) at the end of the subroutine X·F(x) may be 

formed in the accumulator by using the order V D in the master routine after 
the subroutine. 

3. See Part III for detailed program. 

K5 Division of a polynomial by a linear factor giving the quotient poly­
nomiai and the remainder (complex numbers ). 
Closed; 37 storage locations; working positions 40 , 60; time = 
65+57n msecs. 

n P(z) r' - l 1 Z 
Let P(w) = L. Ar~-r and-- = ·L. Z r zn- - r + _ n_ . Given A0 ... An this 

r=O z-w r=o z-w 
subroutine calculates Z o ... Zn by means of the recur rence relation Z r+l= 
Zrw + A r+l • where z0 = Ao . Tl•e r eal and imaginary parts of ware stored 
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in 8D and lOD respectively and the real and imaginary parts of Ar are stored 
in (4r+m)D and (4r+m+2)D respectively. The real and imaginary parts of Zr 
are stored in (q+4r)D and (q+4r+2)D. In addition, the real and imaginary parts 
of Zn are stored in 4D and 6D respectively. 

Note: If desired the coefficients Zr may be written over the coefficients Ar; 
that is, q may equal m. 

Preset parameters: 

HI El 
P 4n F 
P m H 
P q-m F 

K7 Shift of origin of a polynomial (real numbers). 
Closed; 29 storage locations; working positions OD, 4D; time = 
ll(n+1) 2 msecs. 

n 
Given the coefficients of the polynomial r~l arx n-r, the subroutine replaces 
these by the coefficients of the polynomial 

n n-r - n ]n-r 
r~ brX = r~ar[X+C(R) , 

using Horner's method. ar is stored in (h+2r)D. 

Note: The contents of the register are unaffected by the operation of the 
subroutine. 

Parameters: ~ 2~ ~] punched at the end of the subroutine by the user. 

K8 Shift of origin of a polynomial (numbers expressed in floating deci­
mal form). 
Closed; 34 storage locations; working positions 4D, OD*, OH*, ON*; 
time= n 2/8 sees. 

11 

Given the coefficients of the polynomial r~arx n-r, the subroutine replaces 
these by the coefficients of the polynomial 

n n 
..- b n-r ..- ( )n-r 
r~ rX = r~ar X+a , 

using Horner's method. All numbers are expressed in floating decimal form 
as used in All. ar is stored in location (h+2r)D and a is stored in location 6D. 

Notes: 1. All is used as an auxiliary subroutine. 
--- *2. Working positions OD, OH, and ON are those used by All. 

3. The floating decimal accumulator must be cleared before using 
K8 - it will be left clear. 

4. Since K8 uses the same M and .1 parameters as All, it may follow 
All on the input tape without these parameters being replaced. 

Parameters: 
A h DFJ punched at the end of the subroutine by the user. 
P 2n 

Preset parameters: M and .1 parameters as for All 
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L. Subroutines for evaluating logarithms. 

L1 Logarithm to base 2. Large range. 
Closed; 38 storage locations; working positions 4D and 8; time = 
(13m+776) msecs where m =integral part of logarithm. 

Calculates (1/32)log2 [C(6D)] and places result in OD. 

Accuracy: 34 binary places, but not rounded off. 

Notes: 1. If C(6D)<2-32 , accumulator capacity is exceeded. 
2. -:r34 is left in 4D. 
3. See Part ill for detailed program. 

L2 Logarithm to base 2, small range. 
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Closed; 31 storage locations; working position 4D; time = 950 msecs. 

Calculates logz [2·C(6D)), where 1/4 .$.C(6D)<1, and places result in OD. 

Accuracy: maximum error = ±2 - 34 

M. Miscellaneous subroutines. 

M1 Assembly subroutine No. 1. 
Special; 16 storage locations. 

Facilitates the assembly of a master routine, number sequences, and closed 
subroutines to form a complete program. See Part I, Sections 4-61 and 4-62. 

Note: See Part ill for detailed program. 

M2 Assembly subroutine No. 2. 
Special; 16 storage locations. 

Facilitates the assembly of a master routine and closed subroutines to form 
a complete program. Does not apply to number sequences. See Part I, Sec­
tions 4-63 and 4-64. 

Note: See Part III for detailed program. 

M3 Print heading. 
Closed; 10 storage locations (temporarily); working position 0. 

Copies information directly from the tape to tne teleprinter and may thus be 
used to print a heading at the top of a sheet. 

Notes: 1. M3 is placed at the front of the program tape unless R9 is used, 
in which case M3 follows R9. No control combinations need precede M3. 

2. M3 is immediately followed by the heading, which may include 
line feed, carriage return, etc., according to the teleprinter code. 

3. The heading is followed by blank tape, and the succeeding orders 
should be prefaced by a control combination of the form P K T n K. 
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P. Print subroutines. 

P1 Print a single positive number (without layout or round-off). 
Closed; 21 storage locations; time = (17ln+10) msecs. 

Prints the positive number in OD ton places of decimals, leaving R·10 n in OD, 
where R is the remainder. 

PP+1 I AG ps FFJ orders calling in P1 Program parameter: 
p-+2 P n F 

Notes: 1. Teleprinter must be on figure shift. 
2. Layout must be separately controlled. 
3. Round-off is not included. 

P6 Print short positive integer. 
Closed; 32 storage locations; working positions 1, 4, and 5; time= 
about 900 msecs. 

Prints 2 16·C(O) with suppression of nonsignificant zeros but without layout. 

P7 Print positive integer up to 10 digits . 
Closed; even; 35 storage locations; working position 40; time = 

approx. 1.8 sec. 

Prints 234 ·C (OD) with zero suppression but without layout. 

Notes: 1. Teleprinter must be on figure shift. 
2. Layout must be separately controlled. 
3. C(OD) must be positive and less than 1010 ·2-34 • 

4. U the number to be printed is less than 10 9, the left-hand zeros 
are replaced by spaces. In any case, 10 positions on the paper are used. 

5. See Part Ill for detailed program. 

P8 Print table of positive integers in a special layout. 
Closed; even; 62 storage locations; working position 4. 

Prints n = 234 .C(OD) in a special layout. 0~<10 10 • Layout: first number in 
each row printed to full 10 decimal digits; of the remaining numbers, only the 
least significant d decimal digits are printed. c numbers in each row, one 
space between columns. 5 lines in each block. 

P10 Print a short positive integer, with conversion check, error indi­
cation, and optional suppression of nonsignificant zeros. 
Closed; 70 storage locations; working positions 0, 1, 4, 5, and 6; 
time = approx. 1.8 sec. 

Prints C(4) as a short integer. Failure ofF-check is indicated by"?" after 
incorrect digit. Failure of binary-decimal conversion check is indicated by 
''?? '' after incorrect number. 

Program parameter: P F 
or I F 

for no zero suppression 
for zero suppression 
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P11 Print signed decimals in a preset layout (with digit check). 
Closed; 52-ts* storage locations; working position 4; time = about 
180 mse~s per symbol. 

Prints C(OD) rounded-off, preceded by negative sign if negative. Layout: 
n columns with s spaces between columns; preset digit layout (see note 8); 
blocks of 5 lines with one space between blocks. 

Preset parameters: 45 
46 
47 
48 

H round-off order 
N P 5n F 
M P (44+S) (} 
.1 p X F 

Notes: 1. Figure shift takes place during input of orders. 
2. Negative numbers are preceded by -, positive numbers by a space. 
3. Maximum width of layout = 70 symbols. 
4. If the F order shows an error, a line feed occurs and the next 

digit printed may be in error. 
*5 . s can be 1, 2, 3, or 4. 

6. Last order on library tape is P 5 F, giving number of lines in 
block. This may be altered if required, but the second preset parameter will 
then be n (block length) . 

7. If the subroutine starts in q, a new block will be started if (q+20) 
is cleared before the next number is printed. 

8. The digit layout is determined by the fourth preset parameter 
P x F, where x may be obtained as follows. Imagine the printed characters, 
including digits and spaces (only single spaces are permissible) laid out in 
the form below, starting with the most significant digit at the left-hand end. 
Then add together the numbers below the spaces, and the number above the 
last digit; the sum is x. 

I I I I I I I I I I I I I I I I 

For example: (i) to print 10 digit numbers with spaces after the 3rd, 6th, 
and 9th digits, x = 6144 + 384 + 24 + 4 = 6556; (ii) to print 8 digit numbers 
with spaces after the 4th and 5th digits, x = 3072 + 768 L 32 = 3872. 

9. See Part III for detailed program. 

P12 Print signed integers in a standard layout (with digit check). 
Closed; 57 storage locations; working position 4; time = about 
300 msecs per symbol. 

Prints 234 ·C(OD) preceded by negative sign if negative. Layout: 5 columns, 
5 lines per block; numbers in subcolumns of 4, 3 and 3 digits with one space 
between numbers. 
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P13 Print single decimal (without layout or round-off) with digit check 
and variable digit layout. 
Closed; 30 storage locations; time = (9+30n) msecs. 

Prints the positive number in OD ton places of decimals, leaving R·10 in OD, 
where R is the remainder. The digit spacing and n are determined by a pro­
gram parameter P x F, where x is calculated as in Pll. 

P t p 1 I GA p FFJ orders calling in P13 rogram parame er: P+ s 
P+2 p X F 

Notes: 1. Teleprinter must be on figure shift. 
2. Round-off is not included. 
3. Failure of F check causes # to be printed. 

P14 Print signed decimal with round-off and digit check. Layout con­
trolled by program. 
Closed; 46 storage locations. 

Prints the decimal number in C(OD), rounded-off. Digit spacing, number of 
digits printed and layout are determined by a program parameter. 

Preset parameter: 45 I Hi A mD round-off order 

p A p F J orders calling in P13 
P+1 G s F 

Program parameter: .... P+2 p X F 
or K 4096+X F Layout constant: see note 2. 

Notes: 1. Figure shift is called during the input of orders. 
2. The number of digits and their spacing is determined by the pro­

gram parameter, which is calculated as in subroutine Pll. Carriage return 
and line feed will occur before the number is printed if K 4096 F is added to 
this layout constant. Each number is followed by a space. 

3. If the F order shows an error a line feed will occur and the next 
digit printed may be in error. 

4. Negative numbers are preceded by a negative sign, positive num­
bers by a space. 

5. See Part III for detailed program. 

P15 Print positive number held in register (without digit check or 
layout). 
Closed; 24 storage locations; working positions OD, 4. 

This subroutine will print the number held in the register to n decimals. Nega­
tive numbers are printed as complements. If P15 is entered at the first order 
a new line of printing is commenced. If it is entered at the third order the 
number is printed on the same line. 

Accuracy: no round-off is incorporated. 

Notes: 1. The F-check is not used. 
2. Each number is followed by one space. 

Parameters: P n F is punched at the end of the subroutine. 
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Q. Quadrature subroutines. 

Ql Evaluation of definite integral, using Simpson's rule. 
Closed; 46 storage locations; working positions OD and 4; time = 
36+n(36+ T) msecs, where n = (b-a+h)/h = number of ordinates, 
T = time for auxiliary subroutine. 
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Places 3}J(x)dx in pD, where pD is specified by a preset parameter and a, b, 
and h (the interval of integration) are given by program parameters. f(x) is 
computed by an auxiliary closed subroutine placed with its first order in q 
and designed to put f(x) in OD where x = C(OD). 

Preset parameters: 45 I H I ~ 
p D 

46 N q F 

p A p : J orders calling in Ql 
P+l G s 

Program parameters: P+2 p zl5a F 
P+3 p zlEh F 
P+4 p zl5b F 

Accuracy: rounding-off error is n-2-35 in the worst case. 

Notes: 1. -l~a<b<l. h must be positive and such that (b-a)/h is an even 
integer. 

2. The program parameters are shown above a3 pseudo-orders. 
They are really the values of a, b, and h expressed as short numbers. 

3. Ql uses OD and 4 but these positions may also be used by the 
auxiliary subroutine. 

4. If desired, the integration may be made to terminate when f(x) 
becomes less than a specified quantity by including a suitable test and con­
ditional order in the auxiliary subroutine. 

5. See Part III for detailed program. 

Q2 Evaluation of a definite integral, using Gauss' 5-point formula. 
Closed; even; 52 storage locations; working position (P+4)D; 
time = 206 msecs + 5(auxiliary time). 

Places l~(x)dx in OD where a = C(pD) and (b-a) = C [(P+2)D] and f(x) is com­
puted by an auxiliary closed subroutine placed with its first order inn and 
designed to put f(x) in OD where x = C(OD). 

Preset parameters: 45 I H I P p D 
46 N G n F 

Accuracy: rounding-off error is z- 35 [1+5(b-a)] in the worst case. 

Notes: 1. Remainder term of the formula used is 4.10- l3 ·(b-a)11 f ( lo) (x') 
where a<x '<b. , (b 

2. At the end of the process [1/(b-a)-lfa f(x)dx is left in (P+4)D. 
3. R9 must be in the store when Q2 is read. 
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Q3 Quadrature, using Gauss' 6-point formula. 
Closed; even; 48 storage locations; working position (m+4)D; 
time = 240 msecs + 6 times the time of the auxiliary subroutine. 
ra+h 

Places I= Ja-h f(x)dx in OD, where a= C(mD) and h = C[(m+2)D]/ and f(x) is 
computed by an auxiliary closed subroutine whose first order is in n and 
which places f[C(OD)] in OD. 

Accuracy: truncation error of the formula used is 

1o-15 x f 12 un . (2h)13 = o. 7 x 10-7 f;1
2g/ (2h) 13 • 

Rounding-off error in worst case is 2-35 [1 + 10h + 10h (max f'(x))]. 
(a+h) 2.9 2.(a-h) 

Notes: 1. R9 must be in the store when Q3 is read. 
2. I/2h, that is the mean value, is placed in (m+4)D. 
3. See Part III for detailed program. 

Preset parameters: 45 H I P m D ! location of parameters and working 
space 

46 N P n F location of auxiliary subroutine 

R. Input subroutines. 

R1 Input of a sequence of signed long decimal fractions. 
Closed; 55 storage locations; working positions 0, 1, 4, 5, and 6. 

Given a sequence of numbers punched as decimals followed by sign, this sub­
routine places these numbers in pD, (P+2)D, (P+4)D .... and returns control 
to the master routine when F appears on tape. 

Preset parameters: !~ I :J positions are used by subroutine 

mm+l I AG ms FF ]orders calling in Rl. Program parameter: 
m+2 T p D 

Notes: 1. Decimal point is immediately before first digit punched. 
--- 2. Any number of di.gits up to 10 may be punched; more will exceed 
the capacity of the accumulator. 

3. Blank or erased tape is treated as F. 
4. See Part III for detailed program. 

R2 Input of positive integer during input of orders 
Special; 15 storage locations (temporarily); 

Reads the input tape and converts the decimal integers thereon to binary form 
multiplied by 2-34 and places these in sequence in storage locations mD, 
(m+2)D, (m+4)D, etc. 

Parameter: T m D must follow the subroutine. 
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Notes: 1. After the subroutine T m D is punched, followed by the integers, 
each terminated by F with the exception of the last one which is terminated 
by 1rT Z. 
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2. After the integers have been read, 1T T Z returns control to the 
initial orders and subsequent orders read from the tape will be written over 
R2. 

3. See Part ill for detailed program. 

R3 Input of one signed long decimal fraction. 
Closed; even; 41 storage locations; working positions 4D and 6D. 

Reads one fraction punched in decimal form followed by sign, and places it 
in OD . 

R4 Input of one signed integer. 
Closed; 22 storage locations; working positions 4, 5, and 6. 

Reads one integer y punched in decimal form followed by sign, and places 
y.2-34 in OD. 

Notes: 1. 1 y [<2-34 
2. R4 is applicable to either long or short numbers; in the latter 

case y·2- 16 will be left in 0 provided that -216s;.y<2 16 • 

R5 Input of a sequence of signed long decimal fractions during input 
of orders. 
Special; even; 32 storage locations (temporarily); working position OD. 

The numbers are punched on a separate tape as sign followed by decimals, the 
first number being preceded by Z T X. After the subroutine, T m D is punched, 
followed by the sequence of numbers, which is copied in the reverse direction. 
The numbers are then placed in mD, (m-2)D, etc., so that mD is the location 
of the number originally punched last. 

Parameter: T m D must follow the subroctine. 

Notes: 1. Any number of digits may be punched. 
--- 2. After the decimals have been read control is returned to the initial 
orders and subsequent orders read from the tape will be written over R5. 

R7 Input of a sequence of signed long decimal fractions during program. 
Closed; even; 37 storage locations; working position OD. 

The numbers are punched on a separate tape as sign followed by decimals, 
each group being preceded by X. This tape is then copied on the main tape 
in the reverse direction. Each time the subroutine is used, it will read the 
numbers from the tape until X is reached. Control is then referred back to 
the main program, the numbers on the tape having been placed in storage lo­
cations mD, (m-2)D, etc., where mD is the storage location of the number 
originally punched last in that group. 

PP+l I AG ps FFJ orders calling in Rl Program parameter: 
P+2 T m D 
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Notes: 1. Any number of digits may be punched. 
--- 2. In a decimal fraction the last significant digits of which are zero, 
these zeros may be omitted. 

3. See Part III for detailed program. 

R9 Input of positive integers during input of orders. Standard form 
for regular use. 
Special: 15 storage locations. 

The actual orders of this subroutine are identical with those of R2 , but R9 is 
intended always to be placed in locations 56 to 70 inclusive, and to remain 
there throughout the input of a whole program, being used any number of 
times. Each time it is used it will read a sequence of positive decimal in­
tegers and place them in consecutive long storage locations. 

Notes: 1. The subroutine tape commences with P K T 56 K, so that it may 
be copied immediately at the head of a tape. It does not have E 13 Z at the 
end, so that it is not automatically obeyed after being read. 

2. R9 is called in by the control combination E 69 K T m D. This is 
followed by the integers each terminated by F except the last, which is termi­
nated by rr to return control to the initial orders. After this must be punched 
a control combination to restore the transfer order, e.g., T Z. The integers 
will be placed in mD, (m+2)D, (m+4)D, etc. 

3. Negative integers may be read if 23 5 is added to each before punch-
ing. 

S. Subroutines for evaluation of fractional powers. 

S1 Square root, slow. 
Closed; 22 s torage locations; working pos itions 4, 5, and 8; time = 

825 msecs. 

Forms YC(6D) and places result in OD. 

Accuracy: 2-34 • Last digit is always 1. 

Notes: 1. If C(6D).:::;.-2-3 2 , accumulator capacity is exceeded. If -2 - 32<C(6D) 
<O final C(OD) = -(1-2 - 3'1. 

2. C(6D) is left unchanged. C(4D) becomes -2-34 • 

S2 Square root, fast. 
Closed; 22 storage locations; working position OD; time = approx. 
(36n+180) msecs, where (2 1/ 4fn- l .:::;_c(4D)<(2 1/ 4rn . 

Forms YC(4D) where C(4D)>O and places res ult in 4D. 

Accuracy: Number of significant figures in result is two less than num­
ber 0f s ignificant figures in a r gument. 

Notes : 1. If C(4D) = 0, subroutine continues to cycle indefinitely. 
2. See Part III for detailed program. 
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S3 Cube root. 
Closed; 25 storage locations; working positions 4, 5, 8, and 9; time = 
approx. 1 sec. 

Forms cube root of C(6D) and places result in OD. C(6D) may be positive or 
negative and is left unchanged at the end. 

Note: See Part Ill for detailed program. 

S4 Reciprocal square root. 
Closed; 22 storage locations; time = approx. (36n+180) msecs, 
where (2.25fn-l.s;_C(4D}<(2.25rn. 

Forms C(OD)/JIC(4D) and places the result in OD. C(4D) must be >O. 

Accuracy J See S2 
Notes 

T. Subroutines for calculating trigonometrical functions . 

T1 Cosine, rapid. 
Closed; even; 44 storage locations; working position OD; time = 
.82 msecs. 

Forms 0.5 cos[2·C(4D)] where I2·C(4D)j$.7T/2, and places result in 4D. 

Accuracy: maximum error = 2-33 . 

T3 General cosine (used with R9). 
Closed; even; 59 storage locations; working position OD; time = 
105 msecs. 

Forms 0.5 cos(2m·C(4D)] and places result in 4D. R9 must be placed in the 
store before T3 is read. 

Preset parameter: 45 I H I P 2m-:3 F (or P D for m = 2) 

Accuracy: maximum error has modulus <2"'35-tm. 

Notes: 1. Applies to angles of any magnitude. 
-- 2. See Part ill for detailed program. 

T4 Inverse cosine. 
Closed; even; 33 storage locations; working positions OD and 6D; 
time= approx. 900 msecs. 

Forms 0.5 arc cos [2 · C(4D)] if 0$.C(4D)$.0.5, or 0.5 arc cos [2!C(4D)IJ 
if -0.5$.C(4D)$.0, and places result in OD. OSarc cos [2 · C(4D)]$. 1T/2. 

Accuracy: maximum error has modulus less than 2- 18 • 

Note: See Part ill for detailed program. 

T5 0.5 cos x and 0.5 sin x at equal intervals of x. Version 1. 
Open; even; 20 storage locations; time = 36 msecs. 
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Calculates 0,5 cos x and 0.5 sin x at equal intervals dx of x by use of the re­
currence relation. 

0.5 cos (x + 4x) = (0.5 cos x)cos dx - (0.5 sin x)sin dx, 
0.5 sin (x + b) = (0.5 sin x)cos 6x + (0.5 cos x)sin h, 

using long numbers. 

Current value of 0,5 cos x in location 2D of subroutine. Current value of 
0.5 sin x in location 4D of subroutine. 

Cos dx and sin 6x must be provided in mD, (m+2)D, respectively. T5 is fed 
into machine with 0.5 cos x = 1/2, 0,5 sin x = 0, Each entry advances x by dx. 

Preset parameter: 45 I H I P m D 

Notes: 1. Initial values may be reset by entering at order 6. 
--- 2. Other starting values may be set by direct planting. It is possible 
to change the scale factor by planting a cos x, a sin x. 

3. See Part III for detailed program. 

T6 0,5 cos x and 0,5 sin x at equal intervals of x. Version 2. 
Open; even; 24 storage locations; time = 36 msecs. 

Similar to T5, but with different starting condition: the first entry sets 
0.5 cos x = 1/2, 0.5 sin x = 0, and each subsequent entry advances the value 
of x by dx. 

Preset parameter: 45 I H I P m D 

T7 Sine, rapid (used with R9). 
Closed; even; 36 storage locations; working position OD; time = 
81 msecs. 

Forms 0.5 sin [2·C(4D)] where I2·C(4D)I~7T/2 and places result in 4D. R9 
must be in the store when T7 is read. 

Accuracy: maximum error is ~2 - 3 3 • 

Note: See Part Ill for detailed program. 

T8 Inverse sine. 
Closed; even; 37 storage locations; working positions 6D and 8D; 
time = approx. 1 sec. 

Forms 0,5 sin- 1 [2·C(4D] where - 1/2~C(4D)~1/2 and places result in OD. 

Accuracy: probable error is 2- 19 for the range -15/32~C(4D)~15/32. 

T9 Tangent, rapid (used with R9). 
Closed; even; 46 storage locations; working position OD; time = 
155 msecs. 

Forms tan C(4D) where -7T/4<C(4D)<7T/4 and places result in 40. R9 must 
be in the s tore while T9 is being read. 

Accuracy: maximum error is 2-33 
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U. Subroutines for counting operations. 

U1 Counting subroutine No. 1. 
Closed; 33 storage locations; working position 4; time = 45 msecs 
per cycle + time for secondary subroutine. 

Controls a secondary subroutine called in by a group of orders of the follow­
ing form 

p I A p F 
P+1 G m F 
P+2 A q F 

The secondary subroutine is executed (t-s+r)/r times with q = s, S+r, S+2r, 
... , t before control is returned to the master routine. (t-s+r)/ r should be an 
integer. r, s, t, and m are specified by program parameters. 

U2 Counting subroutine No. 2. 
Open; 17 storage locations + 2 for each pair of parameters; time = 

30 msecs (average). 

This subroutine is incorporated in a program followed by pairs of parameters 
as follows: E a1 F, P Q l F ; E a 2 F, P q2 F, etc., (any number of pairs). Con­
trol is transferred at the end of the subroutine to a1 if q.:s;.ql and to a2 if q 1 < 
q.:s;_qz, etc., where it is supposed that the subroutine has just been operated 
for the qth time. 

U3 Counting subroutine No. 3. 
Open; 17 storage locations + 2 for each pair of parameters; time = 

30 msecs (average). 

This subroutine is incorporated in a program followed by pairs of parameters 
as follows: E a1 F , P Ql F; E az F, pq2 F, etc., (any number of pairs). The 
first q1 times the subroutine is opera ted, control is transferred to a 1 , the 
next q2 times to a 2 , etc . 

Program parameters: E a1 F~ 

~ ~~ ~ punched after the subroutine 

P q2 F etc. 

Notes: 1. A pa ir of parameters Z F, P 1 F will cause the machine to stop. 
2. See Par t III for detailed program. 

U4 Counting subroutine No. 4. 
Closed; 28 storage locations; time = 45 msecs per cycle + time for 
secondary subroutine. 

Controls a secondary subroutine called in by a group of orders of the follow­
ing form: 

p I A p F 
P+1 G c F 
P+2 *A q F 
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The secondary subroutine is executed n times with q = s, S+r, S+2r , 
S+(n-1)r before control is returned to the master routine. 

m A m F 
m+l G e F *A may be replaced by any other 
m+2 p r F function letter according to the 
m+3 *A s F requirements of the secondary 
m+4 A n F subroutine. 
m+5 G c F 

Note: See Part III for detailed program. 

U5 Counting subroutine No. 5. 
Open; 21 storage locations + parameters; time = 33 msecs (average). 

Similar to U3 but when control has been transferred qr times to a r , the sub­
routine is automatically rest!t and control is then transferred q 1 times to a 1 , 

and the whole cycle is repeated. 

Program parameters: E a1 F 
p ql F 
E az F 
p q2 F 

E ar F 
p qr F 
E 8 () 

Notes: 1. If E 7 () is punched after the parameters instead of E 8 0, the cycle 
will be repeated starting at the second exit, i.e., control will be transferred 
q 2 times to a2 , q3 times to a 3 , etc. 

2. If the following orders a re punched instead of E 8 () the cycle will 
be repeated starting at the rth exit: 

m I A m+2 F 
m+1 E 7 () 
m+2 P 2r F 

3. The subroutine may be made to repeat starting at any point in the 
cycle by means of orders in the master routine which place suitable quantities 
in 19 () a nd 20 () . 

V1 Multiplication of vector by symmetric matrix. 
Closed; even; 47 storage locations; working positions OD, 4, 5, 6, 
and 7; time = (36n+18)n msecs. 

Given a symmetric n-by-n matrix of which only 0.5 n(n+1) elements are stored 
starting in mD, and given ann-vector stored in cD, (c+2)D, ... , (c+2n-2)D, this 
routine will form their product and place it in sD, (s+2)D, ... , (s+2n-2)D. 
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Preset parameters: 45 H P 2n F 
46 N H cD C(cD) =first element of vector. 
47 M v mD C(mD) = first element of matrix. 
48 L1 T sD C(aD) = first element of product. 
49 L y F included at head of library tape. 
50 X p 24 0 

Notes: 1. The matrix elements must be placed in the store in the following 
order: 0 

1 2 
3 4 5 

2. If it is desired to change the values of c, m, s in the course of the 
program, this can be done by changes in the following psuedo-orders (a) H c D 
in (P+26), (b) V m D in (P+27), and (c) T s D in (P+28), where p is the address 
of the first order of the subroutine. 

3. If it is desired to incorporate a left-shift in the multiplication, this 
can be done by replacing the round-off order Y F, which is taken in in the form 
of a parameter, at the head of the tape. 

4. See Part ill for detailed program. 

V2 Addition and subtraction of n dimensional vectors. 
Closed; 25 storage locations; working position 1; time= (13+17.5n) 
msecs. 

Adds (or subtracts) the vector with components in the n long storage locations 
ending in bD, to (from) the vector with components in the n long storage loca· 
tions ending in aD, putting the components of the result into the n long storage 
locations ending in cD . 

Preset parameter : 45 I H I P 2n F 

Program parameters: 

For addition 

P+2 1 A a D 
P+3 P b-a F 
P+4 0 c-b F 

Note : See Part ill for detailed program. 

For subtraction 

P+2 1 A a D 
P+3 K 4096+b-a'F 
P+4 L c-b F 



PARTin 

PROGRAMS OF SELECTED LIBRARY SUBROUTINES 

The following notation is used on all library program sheets. 

Entry points: 

Unconditional transfers 
of control: 

Variable orders: 

Pseudo-orders: 

Use of J: 

Preset parameters: 

Control combinations: 

If control may arrive at an order by being 
transferred there by an E or G order the 
location of the latter (relative to the first 
order of the subroutine) is shown on the 
extreme left, with an arrow pointing to the 
address of the order to which control is 
transferred, e.g., 

16-23 T 6 0. 

A horizontal line is drawn underneath 
every E or G order which is intended to 
produce a transfer of control each time 
it is encountered. 

Orders and pseudo-orders which are to be 
changed during the course of the calcula­
tion are shown in brackets. 

A double vertical line is drawn on the left 
of the contents of all storage locations 
which are intended never to be obeyed as 
orders. 

When reading the address part of an order 
the initial orders treat the letter J as a 
digit of value 10. Some subroutines there­
fore use J for the address 10, thus saving 
one row of holes on the tape. 

C(45), C(46) .... when used as preset 
parameters are referred to as H param­
eter, N parameter ... 

Any "order" with code letter K or Z is 
a control combination. The more common 
ones are described in Part I, Section 2-5, 
and the less common ones in Appendix C. 

104 
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A3 Special arithmetical operations on real numbers in floating decimal 
form. 

See Part I, Section 4-82. In the store, x is represented by the number 
2- 12 x0 + 2-9 Px · In the routine's "floating decimal accumulator" the number 
a is represented by 2-2 a 0 in 10D and 2- 1 p 8 in 9. In the course of forming 
xy, its representation is adjusted by a factor of 10, and its exponent corrected 
accordingly. Thus (xy)o = 10- 1xoYo and P xy = Px + Py + 1. This is done to 
prevent overflow in the numerical part of the floating accumulator. 

Orders Notes 

Part 1: order 3 in R2 is altered to S 40 D. Thus 
the integers are placed in the store 
negatively a nd become -1o-n, n = 0 ... 7 

T 601T6 
607T9 1 7 1 79 869 184 F 
627T9 1 717 986 918 F 
647T9 171 798 692 F 
661T9 17 179 869 F 
687T9 1 717 987 F 
707T9 171 799 F 
721T9 17 180 F 
747T9 1 718 1T 

T 567TZ '] (clears sandwich digit between 56 and 57) p F 
T z 

0 A 3 F 
I] plant link order 1 T 55 9 

2 A H /] 3 A 23 9 form and plant order to extract x 
4 T 8 9 
5 A N J 6 A 23 9 form and plant order to extract y 
7 T 16 9 
8 (A D) extract x tram store 
9 u D copy in OD 

10 L 256 F sh.~ft to remove exponent 
11 u 4 D 2-" x 0 to 4D 
12 R 256 F shift to form 2 - 12x 0 

unpack x 

13 s D cancel x 0 leaving -2"" 9 p x 
14 R 16 F - 1 

-2-lb Px to 0 15 T F j 
16 (A D) ---, 
17 u 12 D 
18 L 256 F 
19 u 6 D 
20 R 256 F unpack y s imilarly 

21 s 12 D 

/J 22 R 16 F 
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23 A F J -2- 15 (Px+Py+1) to 8 24 s 2 F 
25 T 8 F 
26 H 4 D 

l•-4 XcYo to OD 
27 v 6 D 
28 y F 
29 T D _j 

30 H D 

l•-' 10-1 x0 y0 to 4D and R 

31 v 567T6 
32 y F 
33 T 4 D 
34 H 4 D J 
35 A 9 F 

]form 2- 15 (pa-Px-Py -1) 36 A 8 F 
37 E 45 (J jump if xy is smaller than a (approx. ) 
38 T F clear accumulator 
39 H 10 D 2- 2 ao toR 
40 A 4 D J 10- 1 Xo Yo replaces a o 

interchange xy 
41 T 10 D and a if a is the 
42 s 8 F J Px+Py+l replaces P a 

smaller 
43 T 9 F 
44 s F 2-15 (Px+Py+l-pa) to Ace. 

37-45 L D multiply by 2 
46 s 59 (J 

47 E 54 (J jump if smaller component is negligible 
48 A 58 (J ] form and plant Norder referring to 
49 T 50 (J appropriate power of 10 
50 (N D) multiply C(R) by 1o-cJPa- Px- Py-lJ 
51 A 10 D 

] form sum and place in lOD 52 y F 
53 T 10 D 

47 - 54 T F clear accumulator 
55 (E F) link order 
56 L 1229 F 

] 4/ 10 57 Y 819 F 
58 N 767T8 
59 p 16 F 

(Storage locations 607T8 to 747T8 contain the constants -1o-n, n = 0 ... 7, 
which are read before the orders) 

Part 2: T 76 z 
G K (puts new reference address in 42) 
T 447TZ J (clears sandwich digit between 56 and 57) p F 
T z 

0 A 3 F ] plant link order 
1 T 43 (J 

2 A M 
] form and plant transfer order 3 A 13 (J 

4 T 39 (J 



5 
22- 6 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

11--23 
24 
25 
26 
27 

26-28 
29 
30 

29-31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
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s 47 f) 

A 47 0 
T 1 F 
H 10 D 
v 10 D 
s 447TfJ 
E 23 8 
H 46 f) 

T F 
v 10 D 
L 4 F 
T 10 D 
A 9 F 
s 2 F 
T 9 F 
A 1 F 
s 46 f) 

G 6 f) 

T F 
A 9 F 
s 48 f) 

G 28 f) 

z F 
A 49 f) 

E 31 f) 

T F 
s 48 f) 

T 9 F 

R 256 F 

I
I J count number of 

adjustments 

f] ju_mp t~ 23 
if laot> 0.4 

10/ 16 toR 
clear accumulator 

J multiply a 0 
by 10 

l 

J correct Pu 
accordingly 

J count number of 
1
J 

adjustments 
_J 

1 dear accumulator 

]
jump if 

Pa < 511 

stop if Pa2.511 

]jump if Pa2.-511 

I clear ace. if Pa< -511 

Adjust representation of a 
by multiplying ao by 10 and 
decreasing Pa by 1. This 
cycle is repeated until either 
laoi>0.4 or 10 adjustments 
have been made (to provide 
for a o = 0) 

If Pa2.511 , s top the 
machine. If Pa<-511, 
replace Pn by -511 

A 10 D I 
~ 16 ~ Pack a and place 
A 9 F I in store 
L 16 F form 2- 9 p +2-12 a0 1 

(T D) I j 
T 10 D I 
~ 4~ ~ I] clear floating accumulator 

(E F) I link 

~ 3~7 ~ !] 1/ 100 (rounded down) 

J F I 10/16 
7T F 11/16 
p 511 F I 
P 1022 F 
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A5 Special arithmetical operations on complex numbers in floating 
decimal form. 

See Part I, Section 4-82. In the store, z 1 is represented by 2-2 (x l )o in rD 
and 2- 2 (y 1lo in (r+2)D, each rounded off to 28 binary places. The last 6 digits 
of these locations contain the most and least significant halves respectively 
of the 12-digit integer p, the left-hand digit of which is treated as a sign digit. 
In the routine's "com~lex floating accumula~or" the number Ze. is represented 
by 2-2(xe. )o in 140, z- (ya)o in 160, and 2- lo P a in 18F. In the course of form­
ing Zl Z2 = z3, its representation is adjusted by a factor of 10, and its exponent 
corrected accordingly. Thus (z3)0 = 10-1 (z l)o (z2)o and P3 = Pl + P2 + 1. This 
is done to prevent overflow in the numerical part of the "accumulator." 

Part 1: order 3 in R2 is altered to S 40 D. Thus the follow­
ing integers are read negatively and become -lo-n, 
n = 0 ... 8. 

T ll07TO 
ll07T0 1 17 179 869 184 F 
1127r& I 1 717 986 918 F 
1147TB I 171 798 692 F 
1167r& j 17 179 869 F 
1187TO I 1 717 987 F 
1207r& / 171 799 F 
1227r&i 17 180 F 
1247TBI 1 718 F 
1267T6i 1727T 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

I T Z 

I ~ 10~ : J plant link 

I AA H 
105 6 

I u 17 6 
I u 26 e 
I A 200 e 
u 19 e 
T 28 e 
A N 
A 105 (I 

21 e u 
u 34 e 
A 200 e 
u 23 e 

add CD 

add P 2 F 

add CD 

add P 2 F 

l fo'm and plant o'"'" 
to extract z 1 

form and plant orders 
to extract Zz 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

T 
H 

(C 
T 

36 e I 
1947TI:l prepare to collate numerical parts 

(C 
T 

(C 
' T 

l<i 

4 ~) ~! J 2-2 (x l )o to 4D 

6 ~) 1 J 2-2 (y i )o to 6D unpack numerical parts 

10 ~) J 2-2 (x2)o to 100 

12 ~) J 2- 2 (y2)o to 120 



25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

64 - 66 
67 
68 
69 
70 
71 
72 
73 
74 
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H 19617'8 prepare to collate exponents 
(C D) most significant half of Pl 

(~ 16 
;) least significant half of p ll r : e J shift to top of Ace. to get j unpack P1 

L 8 F _ top digit in si~n pos ition (exponent of z 1) 

R 8 F IJ shift to form z- ~ 6 Pl and 
T F send to 0 _ 

~~ 16 ~: ll 
T 8 D I unpack pz similarly 

~ : ~ ~ I 
R 8 F IJ 
A F ' 
A 203 0 I add 2- 16] 2- 16 (P l+P2+1) = 2- 16 ru to 8 

8 F I A 
H 
N 
H 
v 
y 

6 D 
12 D 
4 D 

10 D 
F 

4 D 
12 D 

6 D 
10 D 

F 
6 D 

H 106rr0 
V 4 D 

T 
v 
H 
v 
y 

T 

y 
T 
v 
y 

T 
A 
s 
E 
T 
A 

2-4 [<xl)o(x2)o - (y l )o (Y2lo] 

= 10.2-4 (x3 )o to 4D 

form numerical 
parts of product 

Prepa re to align num­
bers for addition. If 
one number is negligibly 
small compared with the 
other, jump to 101 or 96, 
by-passing the addition. 



110 

75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 

79-96 
97 
98 
99 

7~ 100 
95 -101 

102 
103 
104 
105 

106 
107 
108 
109 
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A 19 F ] 
~ 1 ~ ~(j form 2- 15 [2(pm-Pa)- 18] 

s 108 
E 96 8 jump if P3LPa+9 

A 109 8 Jl U 85 8 form and plant the order 
T 91 (J J H [110 + 2(Pm-Pa)J:rr8 

(H D) 
N 4 D 

(H D) 
N 14 D 
y F 
T 14 D 

(H D) 
N 6 D 

(H D) 

J align and add 
real parts 

N 16 D l a lign and add 
imaginary part s 

F y 
T 16 
E 101 

D 
(j 

T 
A 
T 
A 
T 
T 

F 
4 D 

14 D 
6 D 

16 D 
F 

A 19 F 
T 18 F 
E F) 
C D 

clea r accumulator 

] 
replace (za)o 

by (z3)o 

clear accumulator 

J replace Pa by Pm 

link 

If Pa>P3, (za)o is multiplied 
by 1 and (z3)0 by a negative 
power of 10, and vice versa 

~ 106:rr~ J (clears sandwich digit between 106 and 107) 

T 106 Z 

L 1229 FF _jl 4/lO 
y 819 
P 18 F 
R 128:rr8 

(Storage locations 110:rr(J to 126:rr(J contain the constants -10-n, n = 0 ... 8, 
which are read before the orders) 

Part 2: T 128 Z 
G K (puts new reference address in 42) 
T 
p 

T 
p 
T 

J (clears sandwich digit between 62 and 63) 

64:rrZ J 
~ (clears sa ndwich digit between 64 and 65) 

62:rrZ 
F 
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0 A 3 F J plant link 
1 T 61 I) 

2 A M 

J form and plant tran,fer ordm 
3 A 17 0 
4 u 56 I) 

5 A 72 A 

6 T 50 I) 

7 s 70 I) J count number 29-- 8 A 70 I) 
of adjustments 

9 T 19 F 
10 H 14 D 
11 v 14 D 
12 H 16 D }ump to 30 H 
13 v 16 D \(za)o\ >0.4 
14 s 62rr13 Adjust representation of 
15 E 30 I) Za by multiplying (za)o 
16 H 71 I) 10/16 to register by 10 and decreasing Pa 
17 T D clear accumulator by 1. This cycle is re-
1"8 v 14 D peated until either 
19 L 4 F j(za>o\>0.4 or 10 ad-
20 T 14 D J multiply (z, )o justments have been made 
21 v 16 D by 10 (to provide for (za)o = 0). 
22 L 4 F 
23 T 16 D 
24 A 18 F J correct Pa 25 s 75 I) 

26 T 18 F 
accordingly 

27 A 19 F J count number 28 s 71 I) 

29 G 8 I) 
of adjustments 

15-30 T F clear accumulator 
31 A 18 F J jump if Pa<2047 32 s 73 I) 

if Pa-22047 stop machine. 
33 G 35 I) 

34 z F stop if Pa22047 
If Pa<-2047 replace Pa 

33--35 A 74 I) J jump if Pa 2 -2047 
by -2047 

36 E 38 (} 

37 T F clear Ace. if Pa <-2047 
36-38 s 73 I) 

39 T 18 F 
40 A 14 D 

}ound off (z,)0 to 28 binary plaoe' 

41 A 641T9 
42 T 14 D 
43 A 16 D 
44 A 64rr9 
45 T 16 D 
46 H 667T6 
47 c 16 D J a"emble (y , )0 with lea'! 'Jgn!Iicant 48 H 68rr9 
49 c 18 D 

half of Pa and transfer to store 

50 (T D) 
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51 A 18 D J shift p, so that its most significant 
52 R 16 F 
53 T 18 D 

half is at right-hand enq of 180 

54 c 18 D 
55 H 667T9 J"emble (x, )0 with most signifl<ant 
56 c 14 D half of Pe. and transfer to store 
57 (T D) 
58 T 14 D 
59 T 16 D }''"' "oomplex float"!)' accumulate<," 
60 s 73 9 i.e., put Z e. = 0.2-204 

61 T 18 F 
62 (E F) link order 
63 

II~ 
F dummy order 

64 16 F 
65 F 

i:' 166 s 2 F J form and plant 

T' R 1024 F l these a<de<s a<e obeyed once 
8. 68 T 661T9 

C(661r6) during input of tape and then 
a s9 T 681T9 written over 
~ 70 E 25 F 

E 66 z final C(661r6) = -2-28 

p D 
T 58 z 

68 p 31 D 
69 p F 
70 1T F 11/16 
71 J F 10/16 
72 p 2 F 
73 p 1023 D 
74 P2047 F 
75 p D 
76 M 81 D J 1/100 (rounded down) 
77 p 327 D 

AlO Print single floating decimal number (used with All). 

G K 

[0 
0 55 9 carria ge return 

enter 1 0 56 9 line feed 
-2 A 3 F 

]plant link 3 T 54 9 
4 s D 
5 L 32 F 

}epa<ate numedcal P'"t x (negatively) 6 u 4 D 
7 R 32 F 

and exponent p 

8 A D 
9 R D accumulator contains 2-7 p 

10 E 15 9 



11 
12 
13 
14 

10-15 
14,17-16 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

26-31 
30------+-32 

33 
34 

33---+35 
36 
37 
38 

50,53-39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 

0 
T 
s 
E 
0 
A 
E 
s 
L 
T 
0 
0 
0 
0 
s 
E 
T 
s 
0 
E 
0 
A 
G 
A 
s 
T 
H 
A 
L 
T 
0 
A 
F 
s 
L 
T 
N 
T 
A 
E 
0 
L 
G 

(rr 

II~ 
0 
p 
p 

A 
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2 (} 

D 
D 

16 (} 

57 (} 

601T9 
16 (} 
60 (} 

2 F 
D 
F 

1 F 
57 (} 

57 (} 

4 D 
31 (} 

D 
D 

2 (} 
32 (} 
57 (} 
587T6 
35 6 
43 (} 
59 (} 

D 
59 6 
62 6 

D 
4 F 
1 F 

D 
F 
F 

4 F 
D 
D 
D 

4 F 
39 6 
57 6 

D 
39 6 

F) 
F 
F 
F 

54 z 
F 
F 

1 D 

J 

J 
,___ 

J 

J 

-

-

J 

J 

print "-" J 
modulus p<O 

print space (p2.0) 
add -10.2-7 +2-25 ]divide by 10 

(subtract and count) 

print tens digit of p 
print units digit of p 

spaces 

accumulator contains 2-4x 

modulus J 
. (x<O) 

- s1gn 

print space (x2.0) 
round off and test for x = 10 
arrange to print # if 

accumulator is positive 
add 10.2-4 

-10/16 to register 
add digit layout parameter 

digit cycle 

digit layout 

figure shift or link 
carriage return 
line feed 
space 

figure shift, carriage return and 
line feed during input of tape 

113 
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59 

58 

60 
61 
62 
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liN F ]= (-10 + ~. 10-6 ). 2-4 T 58 z 
liP 268 D 
T 60 z r 256 F ]= -10.2-7 + 2-25 
c 1536 F 
s 128 F digit layout constant 

All Arithmetical operations on real numbers expressed in floating 
decimal form. 

For representation of numbers see Part II. The number in the floating 
decimal accumulator (f.d.a.) is here referred to as y·10q, and the operand as 
X·10P. 

Parameters: 
Preset: H I P s D l l t' f numerical part of f.d.a. N P t F oca wn o exponent 

Preset by subroutine: 

97TM 
117TM 
137TM 
157TM 
177TM 
197TM 
217TM 
237TM 

0 
94-1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

M I p 103 (J 
.1 p (J 

L E 56 0 

E 69 K I 
T 97TM 
1 71798 69183 F 

17179 86918 F 
1717 98692 F 

171 79869 F 
17 17987 F 

1 71799 F 
17180 F 
171817' 

z T 

I dynamic stop order 

1 
10-l 
10-2 

10_3 

10-4 

10-5 

10-6 

10-7 

46 (J 

2 F 
(} 3 
J prepare order 3 

A 
A 
T 

(H F) select parameter 
9 M c 

E 20 (} 
R 256 F 

entire parameter to accumulator 
jump for E or T parameters 

A M 
T 19 (} 
c 1 M 

(J T 11 
(A 
u 
L 
R 
u 

F) 
22 (J 

32 F 
32 F 

D 

10 pl. J Form switch order specifying 
address depending on parameter 
function 

] form A order specifying 
same address as parameter 
select operand 

store top of operand 

J remove exponent p 

numerical part x·z-10 to OD 

A, B, and V para­
meters: unpack 
operand 
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16 s 22 9 J -2- 14 p to 229 J 17 R 64 F 
18 22 9 
19 * 

5-20 J parameter to 229 and 649 
21 
22 ** 
23 
24 30 J il number in f.d.a. '' 25 T H 
26 A 23 9 

positive, change sign 

27 T 63 9 
and set order 63 to A H 

28 s H 
29 E 61 9 test if f.d.a. contains zero 

24-30 A 2 M form (10-y) · 2- ll 
31 E 49 9 
32 H lln:M 1/10 to re~ister 

39-33 T H (10-y) . r 1 

34 A 5 M J adjust exponent 
cycle to multiply 

35 A N 
36 T N 

y by negative 

37 v H 
power of 10 if 

38 A 4 M add 9.2- 11 necessary 

39 G 33 () 

40 E 49 9 
50-41 T H 

42 s 5 M J adjust exponent 
43 A N 
44 T N cycle to multiply 

T parameters 

45 A H }•o y by positive 
only 

46 L 1 F power of 10 if 
47 A H necessary 
48 L D 

31,40-49 s 4 M sub. 9·2-ll 
50 E 41 9 
51 s 3 M sub. 2- 11 

52 y F 
53 T H '";"l,ralue of -y·T n 1 OH 
54 A N q· 
55 s 6 M 
56 p L dynamic stop if q2.63 
57 A 7 M 

examine 

58 E 61 9 jump if q2.-63 
exponent 

59 T H J set y = 0 if 
60 T H q< -63 _j 

29,58-61 s 6 M re-form q·2- 14 

62 L 64 F 2-G q. 
63 (S H) add y·2-11 t 
64 (T D) to store tt 
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65 
66 
67 
68 
69 

19-70 
71 

19-72 
73 
74 
75 

19-76 
77 
78 
79 
80 
81 
82 
83 

75-84 
85 
86 
87 
88 
89 

101,102-90 
69-91 
85-92 

93 
94 

76 - 95 
96 
97 
98 
99 

100 
101 
102 

M 0 
1 
2 
3 
4 
5 
6 
7 
8 
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A 28 9 
T 63 9 
s 6 M 
T N 
E 91 9 
s D 
T D 
H D 
A N 
A 22 9 
E 84 9 
E 95 9 
T 64 9 
H H 
A D 
T H 
s 22 9 
T N 
s 64 9 
s 3 M 
E 92 9 
A 8 M 
T 88 9 

(V D) 
A H 
y F 
T H 
T 64 9 
A 3 9 
G 1 9 
s 22 9 
A N 
T N 
H D 
v H 
L 512 F 
E 90 9 
G 90 9 
E 78 9 
A 1023 D 
p 160 F 
p 16 F 
p 144 F 
p 2 F 
p 126 F 
p 252 F 
v 25rrM 
T 128 z 

J reset 639 t 

J set q = -63 

J change sign of x if 
to be added 

subtrahend to register 

J form z- 14 {q-p) 

jump if qL.p 
ttt 
-2-14 (q-p) to 64 

l 
J larger num-

interchange 
. 1 t ber to f.d.a. numenca par s 

J larger exponent 
to ON 

2- 14 (q-p) to Ace. 

J jump if smaller number 
is negligible 

J divide numerical part 
of smaller number by 
appropriate power of 10 

combine numbers 

sum of difference to OH 
clear accumulator 

J prepare to change order 3 

J add exponents 

A and B para­
meters only 

J multiply numerical 
parts 

V parameters only 

= 10.2-11 
= 2-11 
= 9.2"11 
= 2-14 

= 63.2- 14 

= 126.2"14, 
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*Order 19 switches as follows: 
if parameter function is A to 70 0 
" " B to 72 0 

" V to 76 0 

117 

** 220 contains the parameter itself if the function is E or T (in the 
latter case the order plays no part in the calculation), otherwise 220 is used 
to store -p·2- 14. 

t Order 63 is always S H unless a T parameter is being obeyed and y 
is negative, in which case order 63 becomes A H. 

tt 640 holds the parameter itself if the function is E or T (in the former 
case 640 is not encountered bf, control); when dealing with A and B parameters, 
640 is used to hold -lq-pl · 2- 4 • For all parameters (except E) , 640 is used 
as a "dump" by order 92 to clear the accumulator . 

ttt If control reaches order 76 from order 75, C(Acc.) must be <O and 
control proceeds to 77. If 76 is reached from 19, C(Acc.) must be =0 and 
control is switched to 95. 

B2 Complex operation No. 2. 

Performs operations (including multiplication) on complex numbers. 
Uses as " multiplier register" H (real part) and 2H (imaginary part) . 

46F p 47 0 N parameter 
T 50rrZ ]These orders do not go into the store but 
p F merely serve to clear 50rr0 to ensure 

that the "sandwich digit" is zero when 
the constants PD and PF appearing at 
the end of the subroutine, are planted there. 

T z 
0 A N J forms A n+2 F 

39~ 1 T 2 0 
2 (A F) 
3 u 16 0 J plants order to be obeyed in 
4 u 26 0 16 and in 26 
5 A N increases address of order by 2 
6 u 30 0 
7 G 40 0 
8 T F clears accumulator 
9 A 17 0 J places ineffective order in 18, 26 10 u 26 0 

46-11 T 18 0 
for operations other than V or N 

12 A 4 H J multiply by 2-34 • "unpacks" 13 H 3rrN 
14 v 6 H 

real accumulator 

15 H H 

]ope<ation on'""' put 16 (V F) 
17 H 2 H 
18 (N F) 
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19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

T-40 
41 
42 
43 
44 

41-45 
46 

N 0 
1 
2 
3 
4 
5 

C7 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

u 
s 
L 
L 
L 
T 

I 
A ! 

(V 
H 
v 
H 

(V 
u 
s 
L 
L 
L 
T 
A 
A 
G 
A 
E 
A 
E 
A 
s 
G 

I I 
p 
Q 

I I 
p 
p 

J 

ELECTRONIC DIGITAL COMPUTER 

4 H 
4 H 

F 
F 

64 F 
6 H 
8 H 

F) 
37TN 
J H 

H 
F) 

8 H 
8 H 

F 
F 

64 F 
J H 
2 F 
2 (j 

1 (j 

1 N 
45 (j 

2 N 
8 (j 

5 N 
5 N 

11 (j 

2 F 
F 
F 
D 
F 
F I 

} 'pack'" 'eal accumulato' 

l "unpacks" imaginary accumulator 
I and performs operations 

] 'pack'" lmaglouy accumulato' 

]test for V 

]test for N 

Check function letters, with localized print suppression. 

T z 
(L1 F) 
(P F) 
Q F 
A F 
(j F 
L1 F 
7T F 
K3000 F 
p H 
p N 
p M 



33-11 
12 
13 
14 

13--15 
16 
17 

58 - -18 
19 

17-20 
21 
22 

45-23 
24 
25 
26 
27 

Enter-28 
29 
30 
31 
32 

30l_ -33 
31~34 

35 
36 
37 
38 
39 
40 

39 - 41 
42 
43 
44 
45 

16-46 
47 

16 - - 48 
47 - 49 

50 
51 
52 
53 
54 
55 
56 
57 
58 
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u 
s 
E 
A 
s 

(E 
E 
0 
0 
u 
s 
A 
A 
u 
s 

(A 
u 
A 
s 
(0 
E 
A 
E 
u 
s 
A 

26 () store address of C.O. 

1: : ,-J ; : i tes t for change of mode 

46 Ll )* I 
20 Ll I 
4 () h . 
5 0 :j new lme 

37 e I] 
37 0 I clear top of accumulator 

3 () ! 

26 () 
26 () 
26 () 

F) 
37 () 

() 

3 () 

s.o. 

J 

Transfer 
control 

l 
37 ()) 
34 () 

2 () 

becomes E 34 () for suppression 

11 () 
() 

() 

1 () 

Checking 
cycle , s imi­
lar to that 
employed in 
Cll 

(K 3000 F) c.o. 
u 
G 
A 
s 
u 
s 
A 
E 
0 
E 
0 
u 
s 
s 
A 
u 
s 
s 
A 
u 
E 

1 () 

41 () 

5 () 

1 () 

() 

() 

2 F 
23 () 

6 () 

49 Ll 
7 () 

37 () 

37 () 

16 () 

59 () 

16 () 

16 () 
30 () 
60 () 
30 () 
18 () 

figure shift 

letter shift 

Change of mode of operation 
from printing to suppressed 
or vice versa 

; 
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G z 
59 II~ 35 () = c 94 ()() 
60 12 () = s 71 ()() 

G K 
W2015 z = E 28 Z: stops reading of tape and directs 
E L control to order 28 with E L in the accumu-

lator . 

*Order 16 takes the following forms : 

Print low 
Print high 

Printing 

E 46 8 
G 46 8 

Suppressed 

G 48 8 
E 48 8 

C10 Numerical check, ignoring closed subroutines; will print C(Acc.) 
before obeying T orders. 

Note: Code letter H refers to locations in the first part of the subroutine and 
() to locations in the second part. 

H 0 
1 
2 

10H- 3 
4 

318-5 
6 
7 
8 
9 

10 
11 
12 
13 

4H-14 
15 

30H-16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

E 
T 
A 
T 
E 
0 
E 
s 
E 
s 
T 

(rr 
E 
T 
s 
0 
T 
s 
A 
T 
A 
R 
s 
R 
A 
u 
0 
F 
s 
L 
T 

25 K 
H 

3 F 
F 
F 

2 () 

14 H 
6 () 

32 () 

2 H 
9 H 

F) 
3 H 

rrfJ 
1T8 

H 
rrO 

33 H 
2 F 
9 H 

1T8 
1 F 

rrO 
D 

rr(J 
(J 
() 

() 

() 

4 F 
rrO 

I 

I 

dummy print routine 

print+ 

J form A p F/D if order T p F/ D 
is encountered 

becomes A p F /D 
tes t s ign 

J change sign 

print -

J s et digit count in 9 H 

J multiply by 10/ 16 

}mt 

Print number 
transferred 
by T order 



29 
30 
31 
32 
33 

166---34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
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A 9 H 
G 16 H 
T 7T6 
E 34 6 

liP N 
A 2 H 
s 12 6 
G 19 6 
s 2 F 
E 19 6 
0 3 6 
A 20 6 
A 12 6 
s 26 6 
u 12 6 
u 47 H 
s 5 6 
T 50 H 

(P F) 
T 22 6 
A 40 H 

(P F) 

J digit count 

clear accumulator 
to sequence control 
number of digits 

l test for order A n F in J S(n), i.e., S.O. = C.O. 

line feed 

J form A n+2 F 

form G n+1 F 

J 

=; C(Acc.) or A n+2 when 
subroutine is encountered 

sign of C(Acc.) or G n+1 F when 
subroutine is encountered 
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Test for 
entry to 
closed sub­
routines 
and obey 
them 
directly 

When an order A n F is encountered in n, the order in (n+2) is placed in the 
C.O. position and control is transferred to (n+1) with A 20 6 in the accumu­
lator. Since there is a G order in (n+ 1) control is transferred to the subrou­
tine and the link which is planted in the subroutine is E 22 6 (or E 23 6 if the 
subroutine has one program parameter). When the operation of the subroutine 
is finished control is transferred to order 226 (or 236) of C10 and checking 
recommenced. 

T 
6 0 (P 

1 (P 
2 z 
3 .1 
4 6 
5 Q 
6 Q 
7 A 
8 T 
9 A 

10 T 
11 0 
12 0 
13 0 
14 E 
15 liE 

E 
p 

1 

47 
15 

4 
3 
9 

25 
21 

7 

z 
F) 
F) 
F 
F 
F 
F 
F 
M 
H 
6 
M 
6 
6 
H 
F 
6 
z 
F 

J working space 
for print cycle 

J extracts order at which checking 
starts and replaces it by order 
directing control to C10 (order 216) 

carriage return 
line feed 
figure shift 
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The orders 7 to 14 are executed once during input, and then written over by: 

T 7 z 
189- 7 0 4 9 carriage return 

8 0 3 9 line feed 
9 s 2 H form A n F when control is transferred 

369 -10 u 12 9 
11 s 12 () 

12 (G 2047 M) =A -1 M, becomes select order (S.O. ) 
13 u 22 9 
14 A 50 H l '"' fo< t<an,fe< of coniTol 

....; 
15 s 2 H ..... 
16 G 34 H 

u 

17 s 6 9 
.s 
'0 

36HJ- 18 G 7 9 CIJ 
>. 

38H 19 u 50 H 0 
0. 

20 s 50 H a 
Enter-21 A 47 H Add "C(Acc.)" Q) 

22 (T M) current order (C.O.) 
..... 
~ 

23 u 47 H transfer "C(Acc.)" ..... 
0 

24 E 26 9 ..... 
25 s 3 9 

s.. l te't C(Acc.) fo< ''""' 
,g 

249 -26 s 47 H if - send 1/ 2 to 50H ·s 
27 u 50 H ..... 

fiJ 

28 s 50 H ~ 
29 A 22 9 t) J examine C.O. and test >. 
30 s 1 H t) 

31 E 5 H 
forT order biJ s:: ..... 

6H-32 u 22 9 ..!<: 
t) 

33 s 22 9 CIJ ..c:: 
32H - 34 A 12 9 J sequence control 

u 
35 A 2 F 
36 G 10 9 _j 

During the course of this subroutine the 17 most significant digits of C(Acc.) 
are stored in 47 H and are restored when an order from the original program 
is executed. 

C11 Check function letters. 

G K 
0 (P F) sign of C(A)* 
1 (P F) C(A) stored 
2 9 F 
3 .1 F 
4 A F 
5 Q F 

18 - 6 A 4 9 form new S.OJ 
7 0 2 9 J 1. transfer control 
8 0 3 9 

new me 

31-9 u 11 9 
]plant S.O. 

10 s 11 9 
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11 (Z F) select order (S.O.) 
12 u 22 9 plant C.O. 

Enter-13 0 22 9 print function*** 
14 s 9 subtract .1F if C(A)<O* 
15 A 4 (J J test lor transfer or control" 
16 E 19 9 
17 A 5 9 
18 E 6 9 

16-19 u 9 J clear top of accumulator 
20 s 9 
21 A 1 9 restore C(A) 
22 (K3000 F) current order (C.O.) 
23 u 1 9 store C(A) 
24 E 26 9 
25 A 3 9 l store slgn or C(A)• and clear 24-26 s 1 9 
27 u 9 

top of accumulator 

28 s 9 
29 A 11 9 J advance address specified 30 A 2 F 
31 G 9 9 

in s.o. 
E 13 z 

Followed on tape by 

\ E m F I punched by user. Hence control enters at 
order 13, withE m Fin accumulator 

Notes: C(A) refers to the 17 most significant digits which would be in the 
accUmulator if the original program were operating directly. 

C .0. = current order, the order in the original program which is 
being dealt with. 
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S.O. = select order, the A order which selects the current order from 
the original program. 

*sign of C(A) is stored in 6 coded thus: .1F for negative 
PF for positive or zero 

**after executing order 146, the function digits in the accumulator 
represent E if and only if a transfer of control is to occur. 

***on entry, order 136 causes a letter shift. 

C12 Check function letters, with dummy print routine and delayed 
start. 

0 
1 
2 
3 
4 

Places "blocking order" in h and commences checking when 
blocking order is obeyed for the nth time. 

T z 
A 3 F J dummy print routine T F 
E F 

II(! 6 6) (1) blocking order (2) counter (3) -2-15 

F 
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5 
H-6 

7 
8 
9 

10 
11 
12 

25-13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

38--16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

23-26 
27 

8 28 
29 
30 
31 
32 

31- 33 
34 
35 
36 
37 
38 
39 

I 

ELECTRONIC DIGITAL COMPUTER 

11.1 
(A 3 
A 2 
E 28 
T 3 

(K3000 
E 1 
G 1 
s 2 
0 4 
0 5 
0 J 
A 
T J 
A 3 
T 
s 46 
T 3 
E 34 
E 14 
p 

T 16 
u 18 
s 18 

(G2047 
u 29 
s 6 
s 2 
0 29 
G 26 
s 39 
G 13 
u 6 
s 6 
A J 

(T 
u J 
E 33 
A 5 
s J 
u 6 
s 6 
A 18 
s 3 
G 16 

IIQ 

F 
9) 
F 
9 
9 
F) 
H 
H 
9 
9 
9 
9 
H 
9 
9 
H 
F 
9 
F 
z 
F 
'l 
9 
9 
H) 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
H) 
9 
9 
9 
9 
9 
9 
9 
9 
9 
F 

(1) A 3 9 (2) sign of C(Acc.)* 

J count 

(1) letter shift (2) order from H (3) store C(Acc. ) 

J return to 1H 

temporary , during input 

s.o. 

checking cycle as in Cll 

c.o. 

*sign of C(Acc.) stored thus: PF = positive or zero 
.1F = negative 
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D4 Division, small; positive divisor. 

Repetitive process: an+l = -anCn + an ao = dividend 
Cn+l = -ct, co + 1 = divisor 

Stop when Cn = 0. 

T z 
0 s 2 0 J subtract 1 
1 A 3 0 
2 T D Cn 
3 H D 

]~1 4 N H 
5 A H repetitive cycle 
6 y F 
7 T H 
8 N D J Cn+l 9 y F 

10 G 2 0 test for Cn+l = 0 

D6 Division, accurate , fast. 

C(OD)/C(4D) to OD. 

a n+l =an- Cn+l an + Cn+l 

Cn+l = -anb + (b-1), where b is the shifted divisor 

i- a,-,~1/b 

Cn~O an and en are negative 
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ao = 2b - 2 V2 + 1; therefore Cn is negative until process is completed 

0 
1 

7 2 
3 
4 
5 
6 
7 

14-8 
9 

10 
11 
12 

3---13 
14 
15 
16 
17 
18 
19 
20 

G 
A 
T 
s 
E 
T 
s 
T 
E 
T 
A 
L 
T 
A 
L 
E 
R 
u 
L 
A 
T 
E 

3 
34 

4 
13 

4 

2 
4 

4 

8 

4 

35 
6 

25 

K 
F 
0 
D 
0 
D 
D 
D 
0 
D 
D 
D 
D 
D 
D 
0 
D 
D 
D 
0 
D 
0 

J plant link 

l make divisor positive and 
change sign of quotient 

shift divisor and dividend until 
divisor exceeds capacity 

b-1 to 4D 

ao to 6D 
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30-21 
22 
23 
24 

20-25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

ELECTRONIC DIGITAL COMPUTER 

U 8 D 
N 8 D 
A 6 D 
T 6 D 
H 6 D 
S 6 D 
N 4 D 
A 4 D 
y F 

Cn+1 to 8D 
-C n+1 • an 
+an 
+an+l to 6D 
a n+1 to multiplier register 
a n 
-(b-1) · an 
+(b-1) 

~ 21 ~ ~=J=-'t:..::.e=-st=- accumulator contains 2-34 

V D form quotient 

T D 
(E F) 

IIW1526 D 
link 
3 - 2V2 

E2 Exponential (slow). 

(ex -1) to 4D, where x = C(4D) 
z~ 

Uses a recurrence relation Zn-1 = Zn + 2llTI starting with 

zz3 = x and ending with z 0 = (ex--1) 

0 
1 
2 
3 

16-4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

G K 
A 3 F 
T 18 () 
y F 
L D 
T 6 D 
H 4 D 
V 4 D 
T D 
H 6 D 
V D 
R D 
A 4 D 
y F 
T 4 D 
A 6 D 
L D 
E 4 () 
T D 

(E F) 

]plant link 

J 2-n to 6D. 

]form z ~ 

z~/2n 
z2;2n+1 

]zn + z~/~+1 

Zn-1 to 4D 
shift strobe 

test strobe for end of cycle 

link 

E4 Exponential, fast. Exp C(R) to OD 

G K 
E 69 K 
T 18rr9 

calls in R9 



1811'0 
2011'0 
2211'0 
241!'0 
2611'0 
2!!11'0 
3011'0 
3211'0 
341!'0 

0 
1 
2 
3 
4 
5 

13-6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

F1 
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2 600 54 F 
06 F 
78 F 
73 F 

31 239 
235 853 

1430 072 
7157 739 46 F coefficients in power series 

28633 011 49 F 
85899 335 88 F 

1 71798 691 47 F 
1 71798 691 84 11' 

T z I A 3 F 
T 14 f) I 
v 1811'8 

I A 2011'8 
T D 

J plant link 

J form as + a gx 

s 17 0 set power series cot..:>•tr 
A 16 0 
T 9 f) 

v D 
(A D) 
T D 
A 9 f) 

s 15 f) 

G 6 0 

~form a1 + a 2x + •. . 

J 
(E Fl link 

II~ 
3411'8 
3611'8 
14 F 

T 36 z 

Interpolation. 

127 

The subroutine places f [2nC(4D)] in 10D. The process used is that 
described in Milne's Numerical Calculus, p. 72, and known a~ Neville ' s 
method. 

48F (P F) I (becomes P 2b 1!'8) L1 para meter 
49F (P F) (bec omes P 2b D) L para meter 
50F p 61 0 X parameter 

T z 
0 A 45 F 
1 u 49 F send P 2b D to 49 
2 A 42 F 
3 T 48 F send P 2b 1r8 to 48 
4 s 2 F 
5 R M 
6 L 64 F 
7 L 32 F 
8 T 45 F send -2-n to 45 
9 A 46 F 
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10 R M 
11 L 64 F 
12 L 32 F 
13 T 46 F send a2- r. to 46 
14 E 25 F 

E z 
p F 

This sequence of orders calculates the parameters required by the subroutine: 
these orders are written over by the orders following: 

T z 
9- 0 T 20 F J partial sum times 10 

1 v D 
2 L 8 F 
3 s 40 D subtract new digit 

14- 4 u D 
5 (T F) = T 66 L\ 
6 I 40 F J read next symbol 
7 s 40 F 
8 A 39 F 
9 E () test for F 

10 A 2 F 
11 E 25 F test for Z 
12 A 5 () change destination order 

Enter~13 T 5 () 

14 E 4 (} 

E 13 z 
T 66 L\ 

66L\ 1 71798 69184 F 
64L\ 85899 34592 F 
62L\ 57266 23061 F 
60L1 42949 67296 F 
58.1 34359 73837 F 
56.1 28633 11531 F 
54 L1 24542 67026 F 
52 L\ 21474 83648 F 
50L1 19088 74354 F 
48.1 17179 86918 z 

These orders place -1, - 1/2, ... -1/10 in positions 66.1, 64.1, ... , etc., and 
are then written over by what follows 

T z 
0 A 3 X 
1 u 11 () form A P+2 F 
2 A 7 () 

3 T 60 () formE P+3 F 
4 H 1 X J collate "integral" part of C(4D) 
5 c 4 D 
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6 s 2 X 
subtraot a l 7 u 1 F 

8 R 32 F form address of first entry 
9 R 32 F of the table usE:d. 

10 L M 
11 (A F) = A P+2 F 
12 T 16 0 
13 A 4 

~ I 14 s 1 
15 T 4 D 
16 (A F) add first entry used 
17 T 10 D transfer to lOD 
18 A 167TO 
19 E 21 0 

58-20 A X 
19-21 A 37TX 

22 T 267TO 
23 A 4 D J modify argument 24 A 1 X 
25 T 4 D 
26 (A D) add next entry of table required 
27 (T D) 
28 A 27 0 l 
29 s 59 0 

55---30 A 17 0 
31 u 52 0 
32 A 6 X 

form orders required in locations 
33 u 41 0 
34 A 7 X 

400, 410, 490, 500, and 520 for 

35 u 40 0 
successive linear interpolation. 

36 u 50 0 
37 s 27 0 
38 A 8 X 
39 T 49 0 
40 (A D) 
41 (S D) 
42 T D 
43 H D 
44 v 4 D 
45 L M 
46 y F linear interpolation 
47 T D 
48 H D 
49 (N D) 
50 (A D) 
51 y F 
52 (T D) 
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53 A 52 0 

' ] oount numbe• of tnt.,polatio"' 

54 s 59 () 
55 E 30 () 
56 A 26rr() 
57 s 5 X 
58 G 20 () 
59 T 12 D clear accumulator 
60 (E F) link 

X 0 

II: 
8 L 

1 H = -2-n 
2 N = a2-n 

T 64rrZ 
4 liP 2 F 

T 64 z 
3 liP 2 F 

T 66 z 
5 T 6 L 
6 u F 
7 K4098 F 
8 v 66 .1 

E 25 K 
T 67rrL1 

The subroutine is of variable length. The number of reciprocals required 
depends on the number of entries used in the interpolation. Their position 
is so arranged that those not required are written over by the orders of the 
subroutine. 

F2 Solution of f(x) = 0, or inverse interpolation (second-order 
process). 

Working space is allocated thus : 
hD Xc 

(h+2)D Xa 
(h+4)D Xb 
(h+6)D -f(xa) = -fa (say) 
(h+8)D -f(xb) or -2-mf(xb) = -Fb (say) 

Xa and Xb are two values of x such that f a and fb have opposite s igns. Xc is a 
va lue obtained by linear inverse interpohttion between Xa and x b. The auxil­
iary routine places fc in OD. If the sign of fc is opposite to that of fa, then Fb 
is replaced by f a and f a by f0 , also xb by Xa and Xa by x 0 • If the sign of f0 is 
the same as that of f a, then fa is replaced by fc and X a by Xc , and also Fb is 
halved. This latter operation prevents Xb remaining unaltered for many cycles , 
as this would cause the process to become a first-order one, or fail to converge 
altogether. At the start Xa and Xc are the given values x1 and x 2, and the fa 
position is cleared. This ensures that initially f a and fc are treated as of op­
posite sign, and the first two function-values to be calculated are f(x~ and 
f(x 2). The process terminates either when f c = 0 or when lxa-xbl .:::;.2- 4 



47F 

0 
1 
2 

56-3 
4 

Aux- 5 
6 

54------- 7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

10-17 
18 
19 
20 

16-21 
22 
23 
24 
25 
26 
27 
28 

24-29 
38-30 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
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.1 F 
T z 
A 3 F 
T 7 (J 

T 6 H 
A 3 (J 

G N 
H D 
N D 

(Z F) 
T 4 D 
v 6 H 
G 17 (J 

T 4 D 
A 2 H 
T 4 H 
A 6 H 
T 8 H 
E 21 (J 

T 4 D 
A 8 H 
R D 
T 8 H 
s D 
u 6 H 
s 8 H 
E 29 e 
T 4 D 
s D 
T D 
s 4 D 
A 57 9 
T 4 D 
y F 
H 4 D 
N D 
A D 
T D 
N 4 D 
y F 
G 30 9 
H D 
A H 
u 2 H 
s 4 H 
T D 
A H 
v D 
y F 
T H 

M parameter 

]plant link 

clear (h+6)D 

J call in auxiliary subroutine 

] test whether f 0 = 0 
link 
clear accumulator 

J test relative sign of fa and f 0 

clear accumulator J 
]xa to Xb 

opposite signs 
]fa to Fb 

clear accumulator J J halve Fb same sign 

J~ to fa 

form -f fc f in OD by division process 
a - c 

similar to that used in 07 

J plant new x a 

J(xa -Xb)toOD 

}wx, 

131 
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48 A D 
49 G 52 8 
50 T D 
51 s D test for lxa - xbiS.2-34 

49-52 R D 
53 y F 
54 E 7 8 
55 T D clear accumulator 
56 E 3 8 repeat 
57 IlL! M = -1 

F3 Differencing and checking subroutine No. 1. 

T z 
0 A 3 F J plant link 1 T 24 8 
2 A D l fo'm fouth diff.,ence 
3 s H 
4 s 2 H 
5 s 4 H 
6 s 6 H 
7 u 8 H 
8 A 6 H 
9 u 6 H 

10 A 4 H 
11 u 4 H plant differences and new function value 
12 A 2 H 
13 u 2 H 
14 A H 
15 T H 
16 A 8 H 
17 G 20 8 
18 T 4 D 
19 s 4 D 

test fourth difference 
17-20 A 10 H 

21 E 23 8 
22 0 25 8 

21-23 T 4 D 
24 (Z F) link 
25 liB F 

Gl Simultaneous first-order differential equations by modified 
Runge-Kutta process; single step. 

T 47TZ 
5 IIH 682 D 

T 61rZ 
7 liP N 

T 127TZ 
13 II~ 1405 D 



15 

17 

0 
1 
2 
3 
4 

6 

8 
9 

Aux-10 
11 
12 

Aux~14 

16 

Aux~18 

19 
20 
21 

Aux~22 

12-23 
24 
25 
26 
27 

21-28 
58-29 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
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T 147TZ 
T H 
T 167TZ 
T 2 H 
T z 
A 3 F 
T 61 8 
A 31 8 
G 63 8 
.1 F 
T 6 z 
p N 
T 8 z 
M M 
0 .1 
H 4 8 
A 20 8 

(E 23 8) 
T 14 z 
A H 
T 16 z 
A 2 H 
T 18 z 
H 1271'8 
s 1271'& 
T 12;r8 
E 28 8 
H 411'8 
T 4 D 
u F 
s 38 8 
A 25 fJ 
T 38 e 
s 611'8 
A 1671'8 
u 4611'8 
A 8 8 
u 37 8 
A 9 e 
u 55 e 
A 24 e 
T 39 e 

(Z F) 
(R 105771'9) 
(Z F) 
y F 
u 6 D 
v 6 D 
R L 
y F 

J plant link 

set count = A 8 8 

= - 1/2 J = - 2/3 

enter for first stage 

]n172 
enter for second stage 

enter for third stage 

enter for fourth stage 
clear 4D or accumulator 

J switch order 38* 

plant variable orders 

* 
cycle dealing with 
each variable in 
turn 
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45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 

3 ---- 63 
64 
65 

u 
(Z 
(Z 
A 
L 
A 
L 
s 
N 
y 

(Z 
A 
s 
G 
A 
s 

(Z 
A 
u 
G 

ii(Z 

ELECTRONIC DIGITAL COMPUTER 

D store r 
F) add oldy 
F) plant new y 
D 
D 
D 
L form new 2mq 

6 D 
4 D 

;) I plant 2mq 

461T6 ll 14 1T6 test ~or last 

29 6 i _ vanable 

65 6 ' 
11 6 I 

F) I 
35 (J I 

65 6 I 

;) I 

link: tests for end of step 

to auxiliary subroutine 
count 

*Order 38 is switched to U 1028 D (equivalent to U 4 D) for stages 
1, 2, and 3 and back w R 10577r9 (equivalent toR D) for stage 4. During 
stage 4, 4D remains empty. 

The register contains - 1/ 2 during stage 1, - Vi72 during stage 2, + Jli72 
during stage 3, and - 2/ 3 during stage 4. At each stage, the cycle of orders 
29 to 58 is performed n times. 

G3 Integr a tion of y" = f(x,y) by 5th order process. 
--- -----

Yz ~ Y1 + llYV2 1-(y~ + 1/1262 y~ )h2 (1) 

y~ = f(x 2 ,Y2 ) (2) 

First, (1) is used with y~ in place of Yz and o2 y~ in place of o2y'}.. The value 

of y2 (= [y2] a • say) obtained is used in (2) to get (y2'Ja, from which a value of 

ll 2y}' = [o 2y j'Ja ca n be obtained. [y ~Jaand [ll2yJ.Ja are then used in (1 ) to get a new 

value of y 2 = [y 2]0 and so on. The proces s is continued until two consecutive 

values of o2yl_ differ by 2-31 or less. 

T z 
0 A 3 F J plant link 
1 T 44 (J 

G K 
0 A 12 H J increase x1 to xz 1 A J H 
2 T J H 



PROGRAMS OF SELECTED SUBROUTINES 135 

31- 3 H 16 H J (yO • 1/12 ''Yil to OD 
4 v 8 H 
5 A 4 H 
6 y F 
7 T D 
8 H D 
9 v 14 H 

10 y F 
11 A 2 H 
12 u J D provisional value of oy1t to 100 
13 A H 
14 T 18 H Y2 to 18H 
15 A 15 (} J call in auxiliary subroutine 
16 G N 

Aux-17 A 20 H 
18 s 4 H 
19 s 6 H 
20 u 4 D trial value of 62yJ'. to 4D 
21 s 8 H 
22 G 25 (} 

23 T D 
24 s D 

22-25 R 4 F 
26 y F test difference in consecutive 
27 E 32 (} 

values of o2y'[ 
28 T D 
29 A 4 D 
30 T 8 H J repeat cycle with new value of 62 " 
31 E 3 (} Y1 

27-32 A 4 D 
33 u 8 H 
34 A 6 H 
35 u 6 H 
36 I A 4 H 
37 T 4 H set new values of operands 
38 A J D 
39 u 2 H 
40 A H 
41 T H 
42 z F) link 

J1 Calculation of Legendre polynomials. 

Uses a recurrence relation giving 0.5 Pn in terms of 0.5 P 11_ 1 and 
0.5 P.-,- 2 which are stored in 4H and 6H respectively. (4H and 6H are used 
as working space.) 

47F p 68 N M parameter 
T z 

9 - 0 T 20 F l 1 v D 
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2 L 8 F 
3 s 40 D 

14--- 4 u D 
5 (T F) 

This section reads the numbers following 
6 I 40 F as in the first section of subroutine F1 
7 s 40 F 
8 A 39 F 
9 E () 

10 A 2 F 
11 E 25 F 
12 A 5 () 

13 T 5 () 

14 E 4 () 

E 13 z 
T M 

1 71798 69184 F 
1 14532 46123 F 

85899 39592 F 
68719 47674 F 
57266 23061 F 
49085 34053 F 
42949 67296 F 
38177 48708 F 
34359 73837 z 

These orders place -1 , -2/ 3, -2/4, ... , -2/ 10 in M, M-2, etc. , and are then 
overwritten. 

T z 
0 A 3 F 

]plant link 
1 T 35 () 

2 A 38 () J plant 0. 5 Po (2x) in 4D a nd 6H 3 u 4 D 
4 T 6 H 
5 A 6 D put 0.5 P l (2x) in 4H 
6 T 4 H 
7 A 39 () 

]form multiplier order 
8 T 20 () 

9 A 40 () J set transfer order 
37 - 10 T 24 () 

11 H 6 D 
12 A 6 H 
13 R D 
14 N 4 H 
15 y F form 0.5 P n(2x) from 0.5 Pn-l and 0.5 P n_2 
16 T D by recurrence relation 
17 v 4 H 0.5 P n = 4x(0.5 P n-l) - 0.5 P n- 2 
18 L 1 F - 2/ n · [x · 0.5 Pn- 1- 0.25Pn- 2l 
19 s 6 H 
20 (H D) 



21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

34-36 
37 
38 
39 
40 
41 

K1 

0 
1 
2 
3 

12-4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

K4 

0 
1 

PROGRAMS OF SELECTED SUBROUTINES 

N 
y 

u 
(T 
A 
T 
A 
T 
A 
s 
T 
A 
s 
G 

(Z 
A 
E 
I 
H 
T 
p 
E 
T 

D 
F 
D 
D) 

4 H 
6 H 

D 
4 H 

20 f) 

41 f) 

20 () 

24 () 

6 () 

36 f) 

F) 
4 f) 

J f) 

F 
M 

8 D 
2 F 

25 K 
1rrM 

J 
transfer order 

J set P n-1, Pn-2 in preparation 
for the next cycle 

J modify H order 

J count and modify transfer order 

link 

J count and modify transfer order 

= 1/2 

Summation of power series. 

T z 
A 3 F 

]plant link T 13 8 
D clear OD 

14 f) 
]formAm D 16 8 

7 8 
D multiply partially formed polynomial by x 
D) add in next coefficient 
F round off 
D transfer to OD 

7 8 J start to form next value of order 7 15 8 
4 f) 

F link 
H 
N 

2 N 

Summation of power series. 

G :I JrormA m+2 F 
A 21 
u 11 

137 
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2 A 3 F J formE m+4 F 3 u 19 (J 

4 s 20 (J J formS m+3 F' 5 T 8 (J 

6 H 4 D 
7 T D clear OD 
8 (S F) 

Jo,mA n-2pD 
18 - 9 A 21 (J 

10 u 6 F 
11 (A F) 
12 T 14 (J 

13 v D 

}o'm polynomial 
14 (A F) 
15 y F 
16 T D 
17 A 6 F J test for completion 18 G 9 8 
19 (E F) link 
20 

1 11~ 1 F 
21 2 F 

K8 Shift of origin of a polynomial (numbers expressed in floating 
decima l form). 
Us es library subroutine A 11, whose first order is in L1. 

G K 
0 A 3 F J plant link 1 T 29 8 
2 s 33 8 J plant -(P 2s F); initially -(P 2n F) 28 - 3 T 4 F 
4 A 30 8 J place 0.10-60 in OD 5 T D 
6 E 9 8 jump 

25 __. 7 s 4 F 
add P 2 FJ modify counter 8 A 5 M 

9 u 5 F 
10 A 32 8 J form and plant A h+2t D 
11 u 18 8 
12 A 31 8 J form and plant T h+2t D 13 T 22 8 
14 A 14 8 J ca ll in All 15 G £1 
16 A D I 
17 v 6 D Xn+l = X n · X+a r+ l 

J 
parameters inter-18 (A D) 
preted by A 11 19 T D 

20 E 21 8 
All - -21 A D 

] copy X r +l 22 (T D) I 
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23 A 5 F J test for end of each synthetic division 24 A 4 F 
25 G 7 9 
26 A 4 F 

add P 2 F J test for end of last division 27 A 5 M 
28 G 3 9 
29 (E F) link 
30 F F o.w-co 
31 0 F (T- A) 
32 A h D J punched by user 
33 p 2n F 

L1 Logarithm to base 2, large range. 

i2 [1og2 C(6D)] to OD 

Fractional part of logarithm is formed digit by digit , us ing a shift-
ing (negative) strobe. 

G K 
0 A 3 F J plant link 1 T 33 9 
2 E 11 9 
3 

11 ~ 1024 

F = 1/ 2 
4 F = 1/ 32 
5 p 512 F = 1/64 

14- 6 A 3 9 
7 L D 
8 T 6 D integral part of logarithm: shift to left, 
9 A D counting in OD 

10 s 4 9 
2-11 T D stop when C(6D) 2: 1/ 2 

12 s 3 9 
13 A 6 D 
14 G 6 9 
15 T 8 F clear accumulator 
16 s 5 9 J plant strobe 32-17 T 4 D 
18 H 6 D J "luar' C(6D) and 19 v 6 D 
20 s 3 9 

te s t whether 

21 E 34 9 
2:1/ 2 or < 1/ 2 

22 A 3 9 
23 L D 

}hlltldt ] 

Digit cycle for 

24 y F 
fractional part 

25 T 6 D 
of logarithm 

26 A 4 D < 1/ 2 
enier digit 27 A D 

] in logarithm 28 T D 
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37-29 
30 
31 
32 
33 

21-34 
35 
36 
37 

M1 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

A 
R 
y 

G 
(E 
A 
y 

T 
E 

ELECTRONIC DIGITAL COMPUTER 

4 

17 

3 

6 
29 

D 
D 
F 
() 

F) 
() 

F 
D 
() 

J shift strobe 

J test for 
last digit 

link 

J 2 1/2 

Assembly subroutine No. 1. 
For details see Part I, Section 4-6. 

G K 
H 2 F P 1 F to multiplier register 
T F store TF, IF or PF 
A 42 F J c 42 F increase C(42) by 1 if odd 
u 42 F 
A 8 F add TF 
u 22 F revised transfer order 
A 15 () J form reference order* 
A F 
H 8 F restore multiplier register contents 

(T 45 F) plant reference order 
A 10 () J advance location of reference order A 2 F 
T 10 () 

E 34 F return to initial orders 
liN F 
T 44 K 

* C(Acc.) upon entry: T, I, or P. Corresponding reference order: 
P, E , or G. 

M2 Assembly subroutine No. 2. 
For detail::? see Part I, Section 4-6. 

G K 
Enter on-0 T F address (0 or 1) to 0 
readingS 1 H F 

2 c 22 F J adju•t addre•• of tran•fe. o'd"' 
3 A 22 F if necessary 
4 u 22 F 
5 s 8 F J set C(42) 6 u 42 F 
7 A 40 F add function letter to form reference order 
8 (T 16 9) plant reference order 
9 A 2 F J advance location of reference order 10 A 8 () 

11 T 8 () 



12 
13 

Enter on-14 
reading 7T15 

27F 
28F 

44F 

PROGRAMS OF SELECTED SUBROUTINES 

H 8 
E 34 
A 43 
E 8 
T 27 
E 14 
E 
T 44 
p 16 

F 
F 
F 
F 
K 
() 

() 

K 
() 

restore C (R) 
return to initial orders 

J these orders perform the l'Ole of the 
original orders in 27 and 28 

these orders replace orders 27 and 28 so 
that 7T switches to 149 and S to 9 

P7 Print positive integer up to 10 digits. 

141 

Prints C(OD) · 234 with suppression of nonsignificant zeros but with-
out layout. 

G K 
0 A 3 F J plant link 1 T 26 () 

2 H 287T9 J multiply by :i" /10 10 and add z-3< 
3 N D 
4 y F 
5 L D 
6 T 4 D 
7 s 27 () J -1/32 to 0 8 T F 
9 H 8 () set multiplier 

10 s 8 () set digit count 
25-11 T 1 F digit count 

12 v 4 D multiply 
13 A F J test for first 14 G 31 () 

nonzero digit* 
15 s F 
16 L D shift 
17 u F J print digit cycle 
18 0 F 
19 F F J check and remove 20 s F 
21 L 4 F shift 

34-22 T 4 D 
23 A 1 F J count digits 24 A 27 () 

25 G 11 () 

26 link 

p J ** 
T 27 z 

27 P1024 F 
28 p 610 D J = -t3 /1010 
29 () 524 D 
30 ¢ F 
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14-31 0 30 I) space J 'uppre" zero 
32 s F add 1/ 32 
33 L 8 F shift 
34 E 22 () 

* C(O) = - 1/32 until first nonzero digit is printed, when C(O) becomes 
positive, thus preventing the suppression of later zeros. 

**These s ymbols appear on the tape and serve merely to clear 28D, 
thus ensuring that the sandwich digit between 28 and 29 is zero, before further 
orders are read. 

Pll Print signed decimals in preset layout. 

T z 
0 A 3 F J plant link 1 T M 
2 A 20 () J test for end of line 
3 G 11 () 

4 0 1 M carriage return 
5 0 2 M line feed 
6 s 2 F 
7 E J I) 

8 0 2 M 
9 A 7 M line and column count 

7-10 s 19 I) 

3-11 A 7 M 
12 T 20 () 

13 A D 
14 E 21 I) test sign 
15 T D c hange sign 
16 s D 
17 0 () print -
18 E 22 () 

19 II~ N 
20 F ! 

14-21 0 5 M l space 
18-22 p 

~ I 
r ound-off 

23 T 
24 A 6 M ! J •et multtplior, digtt oount 
25 H 4 M i 

4n-(O) 
G K 

26 T 4 F 
4!._ (1) 27 v D multiply by 10/ 16 

(2) 28 u F J print (3) 29 0 F 
(4) 30 F F 

-, 

(5) 31 s F 
J check a nd remove 

(6) 32 G 9 () J te't for correct print 
(7) 33 s 3 M 
(B) 34 G J I) 

(6)-(9) 35 0 2 ~ I (8)-(10) 36 A 3 
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37 L 4 F shift 
38 T D 
39 A 4 F 

J digitc~t 40 L D 
41 E 9 
42 0 5 M 
43 L D 
44 G 9 
45 0 5 M J spacing 46 0 5 M 
47 0 5 M 

0 40 K J figure shift performed during input 
7T F of orders 
T 22 K 
T M 

M 0 link 
1 9 F carriage return 
2 .1 F line feed 
3 Q F 1/16 
4 J F 10/16 
5 rjJ F space 
6 p .1 digit layout constant 
7 p 5 F block constant 

P14 Print signed decimal with round-off and digit check. 

0 40 K J figure shift during input 
7T F 
T z 

0 A 45 9 
1 u 4 9 form A n+2 F 
2 A 22 9 
3 T 39 9 form link 
4 (A F) = A n+2 F or layout count 
5 E 8 9 
6 0 40 9 carriage return 
7 0 41 (J line feed 

5- 8 T 4 9 layout count in 49 
9 A D 

10 E 15 9 test sign of C(OD) 
11 T D J reverse sign 12 s D 
13 0 9 print-
14 E 16 9 

10-15 0 42 9 print space 
14-1& p H round-off order 

17 T D 
18 H 44 9 
19 A 4 9 
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35]- 20 T 4 () I 
38 21 v D multiply by 10/ 16 

22 u 1 F 
23 0 1 F 
24 F F 
25 s F 

print digit and check 
26 G 29 () 

27 s 43 () 

28 G 30 () 

26-29 0 41 () 

28-30 A 43 () 

31 L 4 F 
32 T D 
33 A 4 () 

J layout oount 

34 L D 
35 E 20 () 

36 0 42 () 

37 L D 
38 G 20 () 

39 (E F) link 
40 () F carriage return 
41 .1 F line feed 
42 ¢ F space 
43 Q F 
44 J F 
45 p 2 F 

Q1 Quadrature, using Simpson's rule. 

Forms and places in pD the s um: 

r Jb h lfo + 4f1 + 2f2 + 4f 3 + ... + 4fn-l + qz3 
9
f(x)dx 

where fo = f(a), ... f r = f(a+rh), ... fn = f(b) 

T z 
0 A 41 () J pla nt A m+2 F 1 u 8 () 

2 A 2 F J plant A m+3 F 3 u 11 () 

4 A 3 F J plant link 5 u 40 () 

6 s 42 () J plant S m+4 F 7 T 36 () 

8 (P F) becomes A m+2 F ; la ter x r = a + rh 
9 u 8 () J set x 0 = a 10 T F 

11 (P F) becomes A m+3 F; later h 
12 T 11 () plant h 
13 T H clear pD 



14 
39-15 

16 
17 

37--18 
19 
20 

Aux-21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

PROGRAMS OF SELECTED SUBROUTINES 

T 43 
T 4 
A 21 
T 23 
T 4 
A 19 
p 
H 11 
v 
(P 
y 

A 
T 
A 45 
s 43 
u 43 
A 44 
T 23 
A 8 
A 11 
u 8 
u 

(P 
G 18 
s 11 
G 15 

(P 
p 2 
M 1 

(P 
L 
p 

(} 

F 
(} 

(} 

F 
(} 

N 
(} 

D 
F) 
F 
H 
H 
(} 

(} 

(} 

(} 

(} 

(} 

(} 

(} 

F 
F) 
(} 

e 
(} 

F) 
F 
F 
F) 
D 
D 

clear 43 

clear accumulator J for first and 

set "shift" order* last ordinates 

clear accumulator 

J call in auxiliary sub­
routine to compute f(xr) 

J multiply ordinate by h 

" shift" order* 

J add to partial sum 

l set "shift" o'd"' • 

J add h to a + r h 

becomes S m+4 F 
jump when r.S.n-1 

jump when r = n 
link 

PF-PD 

145 

* Order 23 is L 1 F for odd numbered ordinates, and L D for even 
ordinates, except the first and last, for which it is H 11 9 (no effect). 

Q3 Quadrature using Gauss' six-point formula 

Computes lr~)dx by the approximation 
a-h 
3 

2h i~l di[f(a+bi h) + f(a-b; h)], 

where d i and bi are constants. This is equivalent to fitting a curve of the 
eleventh degree. 

a= C(mD), h = C[(m+2)D] 

T z 
0 A 3 F J plant link 1 T 30 8 
2 T 4 H clear 4H 



146 

3 
24-4 

5 
6 

22- 7 
8 
9 

10 
11 
12 
13 
14 

Aux-15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

367T6 
387r6 
407T6 
427T6 
447T6 
467T6 

ELECTRONIC DIGITAL COMPUTER 

s 31 6 
A 32 6 
u 16 6 
A 33 6 
T J 6 
A H 
H 2 H 

(V F) 
y F 
T D 
A 13 6 
G N 
H D 

(V F) 
y F 
A 4 H 
T 4 H 
A J 6 
A 34 6 
G 7 6 
s 35 6 
G 4 6 
H 4 H 
v 2 H 
L D 
y F 
T D 

(E F) 
p 6 F 
v 427T6 
M 6 F 
0 F 
I 467T6 
E 69 K 
T 367T6 

14716 66 

J plant orders 

gives x 

J calculate f(x) 

d i ·f(x) 

link order 

30989 18, 
184 F d1 
315 F dz 
093 F d3 
270 F b1 
762 F bz 
400 7T b 3 

40193 50 
1 60197 04 
1 13594 90 

40994 46 
T 48 z I 

R1 Input of a sequence of signed, long, decimal fractions. 

G K 
T 45 K 

45F P 32 6 
46F P 47 6 

T Z 

H parameter 
N parameter 



0 
1 
2 
3 
4 

35- 5 
6 
7 
8 
9 

10 
11 

24-12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

46-22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

H 32 
1 33 
2 34 
3 35 

16-4 36 
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A 
u 
A 
T 

(A 
T 
T 
T 
A 
T 
H 
s 
T 

(I 
A 
s 
E 
T 
v 
L 
A 
T 
A 
A 
G 
H 
N 

! ~ I 
4 N 
9 H 

F) 
H 
D 

4 D 
5 N 

13 e 
2 N 
6 N 
4 e 

F) 
F 

6 N 
4 H 
6 F 
4 D 
8 F 

D 
4 D 
4 e 
7 N 

12 e 
4 D 

N 
R 128 F 
R 128 F 
V 1 N 
L 
y 

(T 
A 
A 
E 

D 
F 
F) 
H 

3 N 
5 e 

J plant A m+2 F 

J plant link 

(i) A m+2 F (ii) digit count 
plant transfer order 

J clear OD and 40 

J reset switch 

set multiplier 
set digit count** 
digit count 
or T F when switched* 

J test symbol for 
+ , -,or F 

I 

clear accumulator 
multiply previous digits 
shift 
add new digit 

J count digits 

multiply by 234 / 1010 

transfer to store 

change transfer order 

digit cycle 

5 37 I 
6 38 

s 
E 
A 

6 N 
42 9 

7 N 
44 e 

6 

test for - l · -andF 7 39 
8 40 
9 41 

37-42 
43 

39 -- - -- 44 
45 
46 

N 47 
1 48 
2 49 

E test for + 
T F F: clear accumulator 

(E F) link 
f--"""=----=--=---'""" S 4 D I negative: 

T 4 0 _j change sign 

~ 1; r II J set switch to TF 

E 22 u 

~~~-=~-1.,.;:;;:..;:~:.......,:,-~--ll 

} and-

= 10/ 32 

147 
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3 50 p 2 F 
4 51 u 1 F 
5 52 I F 
6 53 p 5 D 
7 54 p D 

*Order 13 is IF during input of punched digits, T F for dummy 
zeros which make up remainder of 10 digits. 

**Digit count is actually set to 11 because + or - sign is counted 
as a digit. 

R2 Positive integer input during input of orders. 

G K 
9- 0 T 20 F 

1 v D J 10 · (partial sum)* 
2 L 8 F 
3 A 40 D add new digit 

14- 4 u D J New partial sum to OD** and to 
5 (T F) final destination of number digit cycle 
6 I 40 F J read next symbol 
7 A 40 F 
8 s 39 F subtract 11.2- 1 6 

9 G 8 test for F 
10 s 2 F subtract 2.2-16 number cycle 
11 G 23 F test for rr (if rr return 

to initial orders) 
12 A 5 8 J change destination of integer 

Enter~13 T 5 (j 

14 E 4 (j 

Followed on tape by: 

E 13 z on subroutine tape 
T m D punched by user 

Hence control enters subroutine at order No. 13, with T m D in the accumulator . 

*The multiplier register contains 10/32 throughout input of orders 
and operation of this subroutine. 

**When obeyed for the first time in each number cycle, this order 
clears OD. 

R7 Input of a sequence of signed long decimal fractions during 
program. 

0 
1 
2 
3 

For details of punching see specification in Part II. 

G K 
A 6 (J 

u 4 8 
J forms A n+2 F 

A 7 8 
T 31 8 plants link 



4 
5 
6 
7 

33-12 
36-13 

14 
15 
16 
17 

5-18 
19 

29-20 
21 

19-22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
31 
33 
34 
35 
36 

PROGRAMS OF SELECTED SUBROUTINES 

(A F) 
E 18 0 

II~ 2 F 
1 F 

T 81rZ 
c 819 F 
T 8 z 
L 1229 F 
T J 7TZ 
D 409 D 
T J z 
s 1638 D 
T 12 z 
v J 7T0 
L D 
y F 

(T D) 
A 15 0 
s 6 0 
T 15 0 
E 22 0 
N 87T0 
y F 
T D 
H D 
I F 
A F 
R 16 F 
T D 
A F 
E 20 0 
A 21 0 

(E F) 
s 25 0 
E 12 0 
T F 
N J 7T0 
E 13 0 

J places -1/10 In 8•6 

J places -8/10 m 10•6 

multiply by -8/10 

transfer to store 

J decrease transfer order by 2 

multiply by 1/10 

read digit 

J shift to most significant 
position 

test for + or -

test for x: also link 

test for+ 

multiply by 8/10 

digit cycle 

82 Square root, fast Vc(4l5) to 4D. 

Repetitive [ 
a n+l =an - 0.5 ancn a 0 = C(4D) an-YC(4D) 

process 
Cn+l = c~(0.25cn -0.75) c0 = C(4D) -1 Cn - 0 

G K 
0 A 3 F J plant link 1 T 20 8 
2 A 4 D J form c0 3 s 9 0 
4 A 6 0 

149 
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19- 5 u D J Cn toR 6 H D 
7 R 1 F J (0.25cn -0.75) to OD 8 s 21 () 

9 T D 
10 N 4 D 

}•' to4D 

11 R D 
12 A 4 D repetitive cycle 
13 y F 
14 T 4 D 
15 v D 

}omc"., 
16 T D 
17 D 
18 F 
19 5 () test for Cn + 1 = 0 
20 link 
21 = 3/4 

83 Cube root of C(6D) to OD. 

Root is formed digit by digit, using a shifting (negative) strobe. 

0 
1 
2 
3 

19 - 4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

23-14 
15 
16 
17 
18 
19 
20 

11-21 
22 
23 
24 I 

G 
A 
T 
T 
s 
T 
H 
v 
y 

T 
v 
s 
E 
T 
s 
A 
T 
A 
R 
y 

G 
(E 
T 
A 
G 

II I 

3 
20 

24 
4 

8 
8 
6 

21 
8 
4 

4 

4 

8 
4 

14 

K 
F 
() 

D 
() 

D 
D 
D 
F 
D 
D 
D 
() 

D 
D 
D 
D 
D 
D 
F 
() 

F) 
D 
D 
() 

F ! 

J plant link 

set first trial (i.e., zero) 

J set strobe 

I 

J form (trlai)3 - C(6D) 

l J increase trial 

l J shiit s trobe 

link J decrease trial 

= 1/ 2 
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T3 General cosine (used with R9). 

0.5 cos (2m C(4D)] to 40. The argument is formed modulo 27T by 
multiplication by 2/7T, and a suitable left shift to cast off the integral part. 
This yields 0/7T where 0 = 2m C(4D) modulo 27T, and 161 ~7T. A power series 
is then used to form 0.5 sin 2x, where x = 0.5 (IBI- 7T /2). 

46F p 42 7TO I N parameter 
E 69 ~ I 
T 

N 0 11,453,246,123 F 
2 2,290,649,225 F 
4 218,157,069 F 
6 12,119,837 F 
8 440 ,721 F 

10 11,144 F 
12 13,493,037,705 F 
14 10,937,044,409 7T 

T z 
0 A 3 F 
1 T 41 () plant link 
2 H 4 D 
3 v 14 N multiply by 2/ 7T, 

4 (L H) multiply by 2"' - ~ 

5 E 8 () J take modulus 6 T D 
7 s D 

5- 8 s 58 () - 1/ 2 
9 T D 

10 H D 
11 N 12 N multiply by 7T / 4 
12 L D 
13 T 4 D 
14 H 4 D 

}toDD 15 v 4 D 
16 y F 
17 T D 
18 H D }u 19 N J N 

- a13 x2 
20 A 8 N 
21 T D 
22 N D 

]a9 - a n x2 + 23 A 6 N 
24 T D 
25 N D J a7 - a gx2 + 26 A 4 N 
27 T D 
28 N D 

]a5 - a 7x2 + 29 A 2 N 
30 T D 
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31 N D 
]a3- aEx2 + 32 A N 

33 T D 
34 N D J 2 4 
35 T D 

-a3x + a5x -

36 H D 
37 v 4 D J 3 5 -a3x + a 5x 
38 y F 
39 A 4 D x- a 3x3 + a5~ 
40 T 4 D 
41 (E F) 

T 5 z 
58 II I F = 1/2 

T4 Inverse cosine. 

0.5 arc cos 2 C(4D) to OD where o.s;.c(4D).s;.1/2. Proceeds by finding 
successively the sign of 0.5 cos 2nC(4D) formed from 0.5 cos 2n-1c(4D) by 
xn = 4x ~-l- 1/2. The required result is built up digit by digit, using a nega­
tive strobe. 

G K 
0 A 3 F 
1 T 28 e plant link 
2 T D 
3 A 32 e 

20- 4 T 6 D strobe in 6D 
5 H 4 D 
6 v 4 D 
7 1 l ' L F form Xn = 4xn-l - 1/2 
8 s 29 e 
9 y F 

10 E 16 e test sign of Xn 
11 T 4 D 
12 s D J form partial sum 13 A 6 D 
14 T D 
15 s 4 D 

10-16 T 4 D 
17 A 6 D J shift strobe 18 R D 
19 y F J test for end of cycle 
20 G 4 e 
21 H D 
22 N 307T6 multiply by 1T /4 
23 y F 
24 E 27 e J take modulus 25 T 4 D 
26 s 4 D 

24---27 T D 
28 
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29 Ill F 
T 30rrZ 

31 liD 888 F 
T 30 z 

30 110 699 D 
T 32 z 

32 IIK4096 F 

T5 0.5 cos x and 

0 
1 

2rr0 

4rr0 

Reset- 6 
7 
8 

o-9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

8--19 

T 
E 

III 
T 

II( I 
T 

;II(P 
T 
A 
T 
E 
H 
N 
H 
v 
y 
T 
v 
H 
v 
y 
T 

z 
9 (j 

F 
2rrZ 

F) 
4rrZ 

F) 
6 z 
1 (j 

2rr0 
19 (j 

4rr0 
2 H 
2rr9 

H 
F 

2rr9 
2 H 
4rr9 

H 
F 

4rr9 

I 

= 1/2 

}laoe' - rr/ 4 In 30rr6 

= -1 

0.5 sin x at equal intervals of x. 

= 1/2 

0.5 COS X 

0.5 sin x 

J reset to x = 0 

l new value of 

l J new value of 

0.5 COS X 

0.5 sin x 

T7 Sine, rapid (used with R9). 

1/2 sin [2 C(4D)] to 4D 

G 
K l E 69 K calls in R9 

T 26rr0 

Version 1. 

26rr0 11 453 246 086 F 

}oeffident' of pnwe' ,.,.,., 
28rr0 2 290 648 539 F 
30rr9 218 152 390 F 
32rr6 12 105 378 F 
34rr9 419 996 1T 

T z 
0 A 3 F 
1 T 25 0 link 
2 H 4 D 
3 v 4 D J form [C(4D)] 2 
4 y F 
5 T D 

153 



154 ELECTRONIC DIGITAL COMPUTER 

6 H D 
7 N 34rr8 
8 A 32rr8 
9 T D 

10 N D 
11 A 30rr8 
12 T D 
13 N D 
14 A 28rr8 
15 T D su mmation of power ser ies 
16 N D 
17 A 2671"8' 
18 T D 
19 N D 
20 T D 
21 H D 
22 v 4 D 
23 A 4 D 
24 T 4 D 
25 (E F ) l ink 

T 36 z : 

U3 Counting s ubroutine No. 3 (open). 

G K 
0 A 16 6 I 

1 s 18 6 : test and jump if q = qr 
2 E 6 6 _j 

3 T F 
4 A 16 6 
5 E 12 6 

2 - - 6 A 1 () 

7 A 15 6 
8 T 1 6 modify C (1) a nd C(14) 
9 A 14 () 

10 A 15 6 
11 T 14 6 

5 --· 12 A 2 F i 
I 

13 T 16 8 : replace q- 1 by q 
14 E 17 ~ ~ 15 

II (~ 
2 

16 F ) I q 

U4 Counting subroutine No. 4 (closed). 

G K 
0 A 2 F 
1 A 2 F 
2 u 22 6 A m+2 F to 22 () 
3 A 2 F 
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4 u 12 8 A m+3 F to 12 8 
5 A 2 F 
6 u 14 8 A m+4 F to 14 () 
7 A 28 6 
8 u 19 6 G m+5 F to 19 0 
9 s 28 6 

10 A 3 F 
11 T 27 6 E m+6 F to 27 () 
12 (P F) becomes A m+3 F 
13 T 20 6 *As F to 20 () 
14 (P F) becomes A m+4 F 
15 T 14 6 
16 s 14 6 

26-17 T 14 6 
18 A 18 () 

19 (P F) becomes G m+5 F 
20 (P F) becomes A S+xr F 
21 A 20 () 

22 (P F) becomes A m+2 F 
23 T 20 () 

24 A 14 () 

25 2 F 
26 17 () 

27 becomes E m+6 F (link) 
28 

* may be replaced by any other function letter. 

V1 Multiplication of vector by contracted symmetric matrix. 

49F y F L parameter 
50F p 24 () X parameter 

T z 
0 A 3 F 

]plant link 1 T 20 X 
2 T 7 F clear 7 

46- 3 u 6 F Jet C(6), C(7) and 
4 A 7 F initial values of 
5 u 7 F C(4) , C(5) for next 
6 T 4 D scalar product 
7 A 6 F J set transfer order 8 A 4 X 
9 T 17 X 

10 T D clear OD 
39-11 A 2rrX 

12 A 4 D 
13 T 14rr0 
14 (H F) 

Jro'm single p'oduc] 15 (V F) 
16 p L round-off or shift 
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17 
18 
19 
20 
21 
22 
23 

X 24 
1 25 
2 26 
3 27 
4 28 
5 29 

21- 6 30 
23- 7 31 

8 32 
9 33 

10 34 
11 35 
12 36 
13 37 
14 38 
15 39 

36-16 40 
17 41 
18 42 
19 43 
20 44 

45 
46 
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A 
T 
A 4 
s 6 
G 6 
A 6 
E 7 
V2046 
p 
p 
p 
p 
p 2 
T 14 
A 5 
A 4 
T 4 
A 4 
s 
E 16 
A 1 
T 4 
E 11 
A 

(T 
A 6 
s 

(E 
A 1 
E 3 

D 
D 
F 
F 
X 
F 
X 
H 
H 
N 
M 
L1 
F 
(] 

X 
D 
D 
F 
X 
X 
X 
F 
(] 

D 
F) 
F 
X 
F) 
X 
(] 

J add to partial sum 

[to 6X if diagonal 
L not yet reached J on or after diagonal 

= P 2(n-1) F 
= P 2n F 
=HcD 
=V mD 
=TsD 

clear accumulator J advance C(5) 

l advance C(4) and 
test for end of 
scalar product 

J plant scalar product 

link and test for 

single 
product 
cycle 

l advance C(6) 

end of process 

scalar 
product 
cycle 

Note: When forming the pth scalar product, C(6) = P 2(p-1) F and C(7) = 

P p(p-1) F. When forming the qth term of the pth element, C(4) = P 2(q-1) F 
and C(5) is the address of the matrix element relative to m. If 

~p, C(5) = P[p(p-1) + 2(q-1)] F, 
q> p, C(5) = P[q(q-1) + 2(p-1)] F. 

V2 Addition and subtraction of n dimensional vectors. 

T z 
0 A 23 (] 

1 u 11 (] 

2 A 2 F 
3 u 13 (] 

4 A 2 F 
5 u 15 (] 

6 A 10 (] 

7 T 22 (] plant link 
8 s 24 (] 
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21- 9 A 23 (J 

10 u 1 F 
11 (P F) A m+2 F 
12 u 17 (J 

plant arithmetic orders 
13 (P F) A m+3 F 
14 u 18 (J 

15 (P F) A m+4 F 
16 T 19 (J 

17 (P F) J arithmetic operation 18 (P F) 
19 (P F) 
20 A 1 F 
21 G 9 (J test for end of operation 
22 (P F link 
23 

II~ 
2 F 

24 H 
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APPENDIX A Keyboard perforator code, etc. 

Perforator Teleprinter Code as punched Binary Decimal 
character character on tape equivalent equivalent 

p 0 p 0 00000 0 
Q 1 Q 1 • 00001 1 
w 2 w 2 • 00010 2 
E 3 E 3 • • 00011 3 
R 4 R 4 • 00100 4 
T 5 T 5 • • 00101 5 
y 6 y 6 • • 00110 6 
u 7 u 7 • • • 00111 7 
I 8 I 8 • 01000 8 
0 9 0 9 • • 01001 9 
J Bell J • • 01010 10 
1T Figures • • • 01011 11 
s s .. • • 01100 12 
z § z + • • • 01101 13 
K ( K ( • • • 01110 14 
Erase Letters • • • • 01111 15 

Blank tape (no effect) 10000 -16 16 
F F $ • 10001 -15 17 
0 Carriage return • 10010 -14 18 
D D • • 10011 -13 19 
1/> Space • 10100 -12 20 
H + H £ • • 10101 -11 21 
N N • • 10110 -10 22 
M M • • • 10111 -9 23 
Ll Line feed • 11000 -8 24 
L % L ) • • 11001 -7 25 
X X I • • 11010 -6 26 
G G # • • • 11011 -5 27 
A A • • 11100 -4 28 
B ? B ? • ! • 11101 -3 29 
c ( c • • • 11110 -2 30 
v ) v • • • • 11111 -1 31 

Notes: 1. Positive and negative decimal equivalents are given for the last 
sixteen codes above. The negative equivalent applies when the symbol occurs 
as the five most significant digits of an order. The extreme left-hand digit 
is then a "1" and, for numerical purposes, acts as a sign digit, thus indicat-
ing a negative number. 

2. It will be seen that the secondary characters on keyboard perfora-
tor and teleprinter do not agree in every case. It is intended that they should 
all eventually be brought into line. 
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Location 

0 
1 

2 
3 

12- 4 
5 
6 

2:1- 7 
38 8 

9 
10 
11 
12 

13 
14 
15 
16 

15-17 
18 

19 

20 

21 

22 

23 
24 

31-25 

26 

20-27 
28 
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The initial orders 

Order ---
(T F) 
(E 20 F) 

II~ 
1 F 
2 F 

A 39 F 
R 4 F 
v F 
L 8 F 
T F 
I 1 F 
A 1 F 
s 39 F 
G 4 F 

L D 
s 39 F 
E 17 F 
s 7 F 
A 35 F 
T 20 F 

A F 

(H 8 F) 

A 40 F 

(T 43 F) 

A 22 F 
A 2 F 
T 22 F 

E 34 F 

A 43 F 
E 8 F 

Notes 

J These orders cause control to be transferred 
to 20. They are not used after the start, but 
their locations are used as working space. 

J These are constants which are intended to be 
left here unaltered in any program. 

Input of address. This group of orders is en­
tered at 8 with the accumulator empty, so 
that 0 is cleared. The next digit on the tape 
is taken in and tested to see if it is less than 
eleven; if so it is doubled and added to ten 
times the content of 0, the sum being sent 
back to 0. The next digit is read, tested, etc., 
and this is continued until the whole address 
has been formed; the next digit read, x, is 
greater than ten and so corresponds to a 
code letter. 

J 
These test to see if x is greater than sixteen. 
If it is, the order A(24+x)F is formed and 
planted in 20. If x is sixteen or less a switch 
order E(16+x)F is formed and planted in 20. 

This adds the address, which is always positive, 
into the accumulator. 

This order places 10/32 in the multiplier regis­
ter during the start and is later replaced by a 
manufactured one which either adds to the 
accumulator the number determined by x, or 
switches control to an address determined by x. 

This adds in the function digits of the order so 
the accumulator now contains the order from 
the tape plus the number selected by x. 

This (the transfer order) transfers the assembled 
order to its final place in the store. 

l These orders increase the address specified in 
the transfer order by unity. 

_j 

Transfers control to 34. 

J Control is switched to these orders by 20 when 
1r has been read from the tape. They add :r16 

to the address (which is in the accumulator) 
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20-29 

20-30 

31 
20-32 

33 

26-34 
35 
36 
37 
38 

39 

40 
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A 42 F 

A 40 F 

E 25 F 
A 22 F 
T 42 F 

I 40 D 
A 40 D 
R 16 F 
T 40 D 
E 8 F 

5 D 

D) 

and transfer control to 8. The address now 
refers to a long storage location. 

This adds the address in 42 to the accumulator. 

This adds the function digits of the order to the 
accumulator. The result is that the number in 
the accumulator is positive if the order has 
function digits represented by T or E, while 
it is negative in the case of G. 

J If the accumulator is positive, the order in the 
accumulator replaces the order in 22; if nega­
tive the accumulator contains the address spe­
cified in order 22 which is then put in 42 (the 
storage location corresponding to 0). 

J 
These take in the function digits, shift them to 

their correct place and transfer them to 40. 
The order in 35 is also used as a constant. 

A constant used in the input of the address. It 
equals 11.2 -ls 

A constant used during the start. It equals 2-lG. 

When the starting button is pressed, the initial orders are placed in storage 
locations 0 - 40 and control transferred to 0. The first orders to be executed 
are the following: 

0 

1 
20 

21 

22 

23 
24 
25 

T F 

E 20 F 
H 8 F 

A 40 F 

T 43 F 

A 22 F 
A 2 F 
T 22 F 

clears accumulator 

transfers control to 20 
places 10/32 in multiplier register 

adds 2- 16 to accumulator 

transfers 2-16 to 43 (the storage location 
corresponding to D). 

J increase order 22 to T 44 F 

The initial input is now ready to take in orders; the first part of the input tape 
is blank so that the first code letter is a space which corresponds to 16; con­
trol is therefore switched from 20 to 32, and the contents of 22 are transferred 
to 42. This action will continue, the spaces being treated alternately as func­
tion digits and code letters. The first symbols encountered will be P and F. 
There are two possibilities, either 

(1) the last space has been treated as a function digit in which case the 
psuedo-order "space F" = 1000000000000 ... is transferred to 44, or 

(2) the last space was treated as a code letter, in which case PF is 
transferred to 44. 

In both cases the following orders will be put in sequence starting at 45, un­
less a control combination comes first. 
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APPENDIX C Control combinations 

The operation and use of the more important control combinations are 
described in Part I, Chapter 2. Details will now be given of some less com­
mon control combinations which are sometimes used and which may be en­
countered in certain library subroutines. 

It may be noted that the operation of code letter z is always equivalent 
to that of K and (J combined. 

Throughout this appendix storage location 42 is assumed to contain 
P n F, placed there by the preceding G K. 

1. (a) E Z P F 

(b) Em Z P k' 

2. (a) 
(b) 
(c) 

E Z J followed by 
E m Z any positive* 
Em K order 

3. T m Z 

4. (a) T m 7T K 
(b) T m 7T Z 

Transfers control to the first order of the last 
subroutine to be read, leaving the accumulator 
clear, i.e., control is transferred to n. 

Transfers contl·ol to the mth order of the last 
subroutine to be read, leaving the accumulator 
clear, i.e., control is transferred to (m+n). 

These control combinations transfer control to 
(a) the first order of the last subroutine, (b) 
the mth order of the last subroutine, (c) the 
order in storage location m. The accumulator 
in all three cases is not left clear but contains 
the positive order which follows the control 
combination. 

Replaces the transfer order by J.- (m+n) F, i.e., 
causes the orders following on the tape to be 
placed in storage locations (m+n), (m+n+1), etc. 

Replaces the transfer order by (a) T m D, (b) 
T (m+n) D, i.e., the next order, or pseudo­
order, to be read from the tape is placed in 
the most significant half (the odd-numbered 
half) of the long storage location m, or (m+n), 
the least significant half, including the sand­
wich digit (see Part 1, Section 4-2) being cleared. 
If the control combination is followed by P F, 
the whole long storage location is cleared. 

5. E 25 K followed Transfers control to order 25 of the initial orders, 

6. T 22 K 

by any which causes the transfer order to be replaced 
positive* order by the positive order following the E 25 K. 

Causes the transfer order to be replaced by the 
next order on the tape regardless of whether 
this is positive or negative. The address spe­
fied in this order is immediately increased by 
unity. For example, T 22 K, T m F will cause 
the orders following to be placed in storage lo­
cations (m+1), (m+2), etc. 
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7. (a) 
(b) 

am Kl 
am~ 

where a 
is a func­
tion letter 
and a m FL.O 

(c) 0 40 K a F 

8. GmK 

9. GZ 

Causes the transfer order to be replaced by 
(a) a m F, (b) a (m+n) F. If the accumulator 
is not cleared by this order further operation 
of the initial orders will not be possible unless 
the transfer order is restored by a suitable 
control combination. 

This is a particular case of 7(a) and causes the 
character a to be printed during input without 
occupying any storage space. T m K must 
follow on the tape where the following order 
is to be placed in m. 

Places a reference address in 42 equal to m 
plus the current addres s specified in the trans­
fer order. 

Adds the current address specified in the trans­
fer order to C(42). 

The above list explains the means whereby most simple operations can 
be carried out during the input of orders. More elaborate operations may be 
carried out by temporarily interrupting the action of the initial orders and 
transferring control to a suitable sequence of orders which have been placed 
in the store. The last of these orders should return control to order 25 of 
the initial orders. Care must be taken to ensure that none of the initial orders 
is disturbed and that the content of the multiplier register is restored if neces-
sary. 

*By "any positive order" is meant any order or pseudo-order whose 
numerical representation in the machine is positive. In general this means 
that the function letter on the tape must be positive , but there may be excep­
tions. For example, if the H parameter is P (n+l) F, then a pseudo-order 
punched as V 2047 H will appear in the machine asP n F. 

APPENDIX D Interpretive subroutines: example of packing of orders 

Consider the evaluation of the sum of the squares of the residuals of a 
set of nonlinear algebraic equations, that is, the evaluation of 

!T! 2 
I: fi (x i ·····xm) ' 

i=Q 

where fi (X i .. .. . xm) = 0 is a typical equation, f i being a function of its arguments 
which can be evaluated by a finite number of additions, subtractions and multi­
plications only. 

If there is no uniformity in the algebraic f0rms of the function fi, direct 
programming of their evaluation takes a. large number of orders. However, if 
the number of variables is not too large, a considerable saving can bP. effected 
in the space occupied by orders by using a special "order" code, of which 
each "order" specifies a sequence of machine orders, and by packi:'lg two 
such "orders" into a single storage location. This also simplifies the task 
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of the programmer, for, since each special "order" specifies a sequence of 
operations, these do not have to be programmed individually. An interpretive 
subroutine is required to interpret "orders" expressed and packed in this 
form. 

A possible code of special "orders" is given in the table. Six "orders" 
suffice to carry out the operations required in the process of calculating the 
residuals and summing their squares. One further "order" is required to 
return control to the main program. Thus the "orders" can be specified by 
three binary digits. 

Moreover, for the operation of the code, three storage locations are 
used. These storage locations, numbered from an arbitrary zero, are indi­
cated by [0], [1], [2]. [0] is used as a multiplier register, [1] to accumulate 
the sum of the squares of the residuals, and [2] as a working position used in 
the evaluation of each function value f i in turn. The interpretation of these 
numbers in terms of long or short storage locations in the machine is carried 
out by the interpretive subroutine. 

Thus, if provision is to be made for reference to not more ~han 29 other 
locations [n] for variables, constar.ts, and intermediate quantities that must 
be stored in the course of the calculation, five digits will be required to spe­
cify the "address" of the number to be operated on. This brings the total 
number of digits necessary to specify an order to 3 + 5 = 8. 

This leads to the possibility of packing two " orders" into one short 
storage location. Thus, the two "orders" 

p 8 
t 17 

i.e. , 0 0 010 1 0 0 0 
10110001 

would appear in one short storage location as 

~ormal position of binary point 

~ o ~ ol o 1 o ~ o 1 ~ 1 1 ~ 7o o 1 

Unpacking is performed by suitable collating and shifting orders, and 
packing by a small subroutine which can subsequently be written over, since 
it is only required during input. In the above example the packing s ;broutine 
used takes 38 orders, and the unpacking part of the interpretive subroutine 
19 orders only. 

As an example of programming using these special "orders" suppose 
the evaluation of 

(x+y-2f + (xy-1)2 

is required. If x is stored in location 4 (related to an arbitrary zero) , y in 
location 5, 2 (suitably scaled down) in location 6, and 1 in location 7, the 
"coding" would appear as 

w4 
w5 
e 6 

(cont'd.) 
wO 
e 7 

r r 
p 4 y 
q 5 

This program will thus occupy only 5 short storage locations. 



164 ELECTRONIC DIGITAL COMPUTER 

The disadvantage of using such subroutines is the time involved. Here, 
the factor over direct coding is about 7, depending on the proportion of the 
different "orders" used. However, against this it might be pointed out that 
with a particular set of eight equations the over-all space saving was 70 short 
storage locations in 200. 

A further possibility which arises is the packing of the interpretive sec­
tion of the subroutine itself so that the same unpacking procedure applies to 
the routine being interpreted and to the routine doing the interpretation. If 
this is done, however, the time factor increases considerably (by about 40:1 
in one program investigated) and it would appear, at least until faster high­
speed stores become available, that such a procedure is of restricted utility. 

"Order" code 

Binary Code 
equivalent letter Verbal description 
---------,-------,----------------.-----

0 p C [n]~ [OJ This is the first "order" in the 
formation of a sequence of con­
tinued products and puts C(n) in 
the storage location used as a 
multiplier register. 

1 

2 
3 

4 

5 

6 

7 

APPENDIX E 

q 

w 
e 

r 

t 

y 

u 

c[n] c[o]~[o] 

C [n]+ C [2]~[2] 
-c [n]+ c [2]~[2) 

c [2] 2 + c [1)~[1) 

0~[2] 

C[O)~n 

Switch "order" 

Blank 

This executes multiplication and 
stores the product ready as multi­
plier for the next multiplication. 

J Accumulation c~ sums and differ­
ences. 

Accumulation of squares of resid­
uals. The interpretive subroutine 
must put C[1l = 0 at beginning of 
operation. 

Transfer. Many intermediate 
products may be repeated and 
should be stored for re-use. 

[
Return to machine order beyond 
this "order," i.e., return control 
from interpretive subroutine. 

Methods of counting in a simple cycle 

In programming, one of the most common problems is the coding of a 
simple cycle of orders in such a way that it is performed a certain number 
of times, n say, before the machine proceeds to the next part of the problem. 
In the absence of any special considerations, this is best done as follows. 
Assume that P n F, or n-2- 15 , is stored in a , that the cycle begins· at the 
order stored inc, and that b is used for the counting operation. 



(c-1) 
c 
C+1 

Sa Fl 
TbF 

AbF 
A2F 
GcF 
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J required orders 

accumulator clear 

As the cycle is entered for the first time, -n . 2- 15 is sent to b; thereafter it 
is increased by 2-15 each time the cycle is performed. On encountering the 
order G c F, C(Acc.) is negative each time until the end of the nth repetition, 
when it is zero. 

Two advantages of this method should be noted. First, it is self-resetting, 
that is, it may be used several times in succession, without anything having to 
be restored. Second, when control finally leaves the cycle to obey the order 
following G c F, the accumulator is empty (as it is usually required to be). 
This method will not necessarily be the best if, for example, the accumulator 
is not required to be empty afterwards or if resetting is not required. There 
are many other possibilities. The counting may be done in steps of any size, 
positively or negatively, and the orders may be rearranged to suit special cases. 
When using a novel method, care must be taken to see that exactly the right 
number of repetitions will be obtained. 

One common variation occurs when one or more orders within the cycle 
have to be changed each time the cycle is performed. To take a simple exam­
ple, suppose that the long number in each location from 100 D to 298 D inclu­
sive is to be increased by x. The orders to be changed have to be increased 
by P 2 F each time, so it is convenient to count in steps of P 2 F. Assume as 
before that P 200 F is stored in a, that the cycle begins at c,. and that b is used 
for counting. In addition, the following constants are required: 

Address Constant 

d A 3000 
e 0 F 
f p 2 F 
gD X 

Then the previous example could be modified thus: 

c-1 s a F subtract P 200 F 
c u b F 
C+1 A d F add A 300 D 
C+2 U(c+6)F 
C+3 A e F add 0 F 
C+4 T(c+7) F cycle 
C+5 A g D add x m = 100, 102, ... , 298 
C+6 (Z F) becomes Am D 
C+7 (Z F) becomes T m D 
C+8 A b F 
C+9 A f F add P 2 F 
C+10 G c F 
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The variable orders are formed from the count-number by orders (c+1) to 
(c+4). Note that since the variable orders and the count number always change 
by the same amount, their differences are constant. The variable orders may 
thus be formed in succession from the count-number by adding the differences, 
without clearing the accumulator. 

The cycle may be shortened by one order by using one of the variable 
orders itself as the counter. f is now used to store A 298 D instead of P 2 F, 
and b is no longer required. 

c-1 s a F subtract P 200 F 
c A d F' add A 300 D 
C+1 U (c+5) F 
C+2 A e F add 0 F 
C+3 T (C+6) F 
C+4 A g D add x cycle 
C+5 (Z F) becomes Am D 
C+6 (Z F) becomes T m D 
C+7 A (c+5) F 
C+8 s f F subtract A 298 D 
C+9 G c F 

Here, the order A m D itself is used as the counter. When it has reached 
A 298 D, C(Acc.) is no longer negative after obeying the order in (c+8), so 
the cycle is no longer repeated. It will be seen that the process is self-reset­
ting. Examples of such cycles will be found in library subroutines E4 (orders 
6 to 13), G1 (29 to 58), and K1 (4 to 12). 

Counting operations are not restricted to addition and subtraction; it is 
sometimes conveniE:nt to count by shifting. In subroutine E2,. for example, 
th~ number 2-34 is first placed in 6D. This number consists of a single digit 
at the right-hand end and this digit, or "strobe," is moved one place to the 
left at each repetition of the cycle. When it reaches the sign position it appears 
negative and repetition ceases. In L1, 83, and T4, a nega tive strobe moving to 
the right is used. The end of the process is detected by rounding off. When 
the strobe reaches -2-35 , the rounding-off brings it to zero and the sign digit 
changes. In all these examples, the shifting method is adopted because the 
strobe is also used in the calculation. 

A more elaborate form of counting by shifting is employed in print sub­
routines Pll (orders 39 to 44) and P14 (orders 33 to 38) to count the charac­
ters printed in a number , A s ingle counting operation controls not only the 
total number of decimal digits printed, but also the layout of subcolumns. 
Briefly, a certain psuedo-order is shifted one place to the left each time a 
character is printed, the sign digit is examined, and appropriate action taken. 
By suitably arranging the O's and 1's in the pseudo-order a great variety of 
results may be obtained, thus in this instance, a pair of 1's terminates a sub­
column and a single 1 terminates the number. 

Use of "tags" 

It is sometimes possible to do away with the need for counting by arrang­
ing that the numbers operated upon give an indication when the last repetition 
is reached. If this can be done, it often reduces the number of orders required 
in the cycle, and increases the speed of working. 
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For example, if an operation is being carried out on a series of positive 
numbers, a negative number can easily be detected and if inserted deliberately 
will cause repetition to cease. Such numbers, with distinctive properties used 
to control tt.e program, are called "tags." Further examples are the numbers 
0 and -1. 0 can be distinguished because when squared negatively it gives a 
non-negative result, and -1 because its square and its complement appear nega­
tive to the machine. Tags can be used in a great variety of ways, apart from 
the control of a simple cycle. Thus numbers at one end of a permitted range 
can be detected by adding a constant and testing the sign, and then the result 
of the discrimination may be used to operate a multiway switch (see below). 

Multiway switches 

It is often convenient to pursue any one of a number of routes after a 
certain point in a program. These routes are usually defined by a discrimi­
nating number used to fabricate an E or G order. This order then transfers 
control to any of a number of E or G orders placed consecutively in the store, 
which in turn switch control to the desired address. 

Thus, if a number a · 2-lb is in U1.e accumulator at a certain point and 
it is desired to switch control to one of a set of storage locations x 1, xz, x3, 
... , Xn thereby, it is possible to proceed as follows: 

s () A (b-1) 9 J adds a to E b () forming E b+a (), which is 
S+1 T (s+2) 9 placed in storage location (S+2) () • 
S+2 (Z F) 

(b-1)9 
b 
b+1 

E b () 
E Xl () 

E x 2 () 





INDEX 

Accumulator register, 4 
Accuracy, 25 
ACE, 12 
Aiken relay computer, 2 
Algebraic equations, 66 
Arithmetical unit, 3-4 
Automatic Sequence Controlled Calculator, 2 
Assembly subroutines, 27-32, 51, 91, 140-

141 
Auxiliary subroutines, 56 

Binary-decimal conversion, 12-14 
Binary point, 4, 6-7, 14 
Blank tape, 18, 42, 47, 50, 160 
Bell Telephone Laboratories, 2 

Checking, 14, 26 
Checking of programs, 38-39 
Checking subroutines, 40-41, 54-55, 79-82, 

118-124 
Closed subroutines, 22 
Code letters, 5, 15-16, 18 
Collation, 7 
Complex numbers, qperations on, 35, 78-79, 

89, 117-118 
Conditional orders, 7-8 
Constants, 20 
Control combinations, 17-18, 104, 161 
Controls of the EDSAC, 43-44 
Counting, 8, 164-167 
Counting subroutines, 41, 101-102, 154-155 
Cube root, 99, 150 

Dahlgren, 2 
Decimal-binary conversion, 12-14 
Differential equations, 32-34, 56-61, 86-88, 

132-135 
Division subroutines, 26, 82-83, 125-126 
Double-length arithmetic, 7 

EDVAC, 3 
ENIAC, 2-3 
Entry points, 104 
Erasing, 42 
Examples, 45-71 
Exponential subroutines, 83-84, 126-127 

Floating decimal subroutines, 35-37, 66, 73-
78, 105-117 

Four-address code, 11-12 

Gauss' formula, 27, 95-96, 145 

Harvard University, 2 

IDM Selective Sequence Electronic Calcula-
tor, 2 

Initial input routine, 15-18, 159-160 
Initial orders, 15-18, 159-160 
Input, 3-4, 12 
Input of orders, 15 
Input subroutines, 25-26, 96-98, 146-149 
Interpolation, 84-85, 127-132 
Interpretive subroutines, 34-37, 162-164 
Inverse interpolation, 84-85, 130-132 
Iterative formula, 8 

Keyboard perforator, 12-13, 42, 158 

Legendre polynomials, 88, 135-137 
Library, 15, 18, 20, 25, 43 
Library catalog, 25, 72 
Library categories, 72 
Library subroutines, 25-37, 43 
Link order, 22-24 
Location of errors in punching, 43 
Location of mistakes in a program, 39-41, 

53, 64 
Logarithms, 91, 139-140 
Long storage location, 3 

Manipulation of a polynomial, 89-90, 138-
139 

Master routine, 27 
Mathematical checks, 57 
Matrices, 102-103, 155-157 
Mistakes in programming, 38-41 
Modification of orders, 8-9 
Moore School of Electrical Engineering, 3 
Multiaddress codes, 11-12 
Multiplier register, 4, 7 
Multiway switches, 167 

National Physical Laboratory, 12 
von Neumann, 3 
Notation, 20-21, 104 
Number tape, 47 
Numerical equivalents of orders, 9 

Open subroutines, 22 
Optimum programming, 12 
Order code, 5-6 
Order tape, 47 
Organization of the EDSAC, 43 
Output, 3, 5 
Output subroutines, 25-26, 50, 92-94, 141-

144 

Packing of orders, 37, 162-164 



Paper tape, 12-13 
Parameters, preset, 23 , 104 
Parameters, program, 23 
Photoelectric tape-reader, 4, 43 
Polynomials, 89-90, 138-139 
Preset parameters, 23 , 104 
Print heading, 91 
Print subroutines, 92-94, 141-144 
Program parameters, 23 
Pseudo-orders, 17, 104 
Punched tape, 4, 158 
Punching of orders, 15 

Quadrature, 27, 48, 61, 95-96, 144-146 

Reciprocal square root, 99 
References, 21 
Repetitive cycle, 8-11 

INDEX 

Speed, 25 
Square root, 98, 149-150 
Stage I, 5 
Stage II, 5 
Starting, 18, 43-44 
Storage location, 3 
Storage of library subroutines, 43 
Store, 3 
Subroutines, 1 
Subroutines, closed, 22 
Subroutines, interpretive, 34-37, 162-164 
Subroutines, open, 22 
Subroutines relating to functions , 84-86, 127-

132 
Summation of power series, 88-89, 137-138 

Tape comparator, 42 
Tape duplicator, 42 

Runge-Kutta process, 32-33, 86-87, 132-134 Tape punching and editing, 42-43 
Teleprinter, 5, 13-14, 50, 158 
Three-address code, 11-12 
Transfer order, 17 

Sandwich digit, 4 
Scale factors, 26 
Selective Sequence Electronic Calculator 

(IBM), 2 
Short storage location, 3 
Sign digit, 3 
Simpson's rule, 27; 61, 95, 144-145 
Single-address code, 11-12 

Trigonometrical subroutines, 27, 99-100, 151-
154 

Tchebycheff polynomials, 27 

Univers\ty of Pennsylvania, 3 


	img135
	img137
	img138
	img139
	img141
	img142
	img143
	img144
	img145
	img146
	img147
	img148
	img149
	img150
	img151
	img152
	img153
	img154
	img155
	img156
	img157
	img158
	img159
	img160
	img161
	img162
	img163
	img164
	img165
	img166
	img167
	img168
	img169
	img170
	img171
	img172
	img173
	img174
	img175
	img176
	img177
	img178
	img179
	img180
	img181
	img182
	img183
	img184
	img185
	img186
	img187
	img188
	img189
	img190
	img191
	img192
	img193
	img194
	img195
	img196
	img197
	img198
	img199
	img200
	img201
	img202
	img203
	img204
	img205
	img206
	img207
	img208
	img209
	img210
	img211
	img212
	img213
	img214
	img215
	img216
	img217
	img218
	img219
	img220
	img221
	img222
	img223
	img224
	img225
	img226
	img227
	img228
	img229
	img230
	img231
	img232
	img233
	img234
	img235
	img236
	img237
	img238
	img239
	img240
	img241
	img242
	img243
	img244
	img245
	img246
	img247
	img248
	img249
	img250
	img253
	img254
	img255
	img256
	img257
	img258
	img259
	img260
	img261
	img262
	img263
	img264
	img265
	img266
	img267
	img268
	img269
	img270
	img271
	img272
	img273
	img274
	img275
	img276
	img277
	img278
	img279
	img280
	img281
	img282
	img283
	img284
	img285
	img286
	img287
	img288
	img289
	img290
	img291
	img292
	img293
	img294
	img295
	img296
	img297
	img298
	img301
	img302
	img303
	img304
	img305
	img306
	img307
	img308
	img309
	img310
	img311
	img312



