
THE EDSAC REPLICA PROJECT

DOCUMENTATION

NOTATION, LIBRARY SUBROUTINES, AND

DEMONSTRATION PROGRAMS

DECEMBER 2021

Contents

Program Notation 1

Code Letters for Initial Orders 2 2

Specifications of Library Subroutines 3
C7 Check function letters . 4
C10 Numerical Check . 7
D6 Division . 11
E2 Exponential . 13
M3 Print heading . 14
M20 Set parameters from dial during input of orders 15
P1 Print positive number . 16
P6 Print short positive integer . 17
P7 Print positive integer . 18
P14 Print signed decimal . 20
R1 Input decimal fractions . 23
R2 Input of positive integer during input of orders 25
R3 Input signed long decimal fraction . 26
R4 Input signed integer . 28
R9 Input positive integers during input of orders 29
S2 Square root . 30
S3 Cube root . 31
T1 Cosine . 32

Demonstration Programs 34
Arithmetic . 34
Cubes . 35
Reciprocals . 37
Hello World . 39
Print Primes . 40
Print Squares . 43
The TPK Algorithm . 46

Initial Orders 1 53

Initial Orders 2 55

- ii -

Program Notation

The following notation is used on all library program sheets.

Entry points: If control may arrive at an order by being
transferred there by an E or G order the
location of the latter (relative to the first
order of the subroutine) is shown on the
extreme left, with an arrow pointing to
the address of the order to which control
is transferred, e.g.,

16→ 23 T 6 θ.

Unconditional transfers
of control:

A horizontal line is drawn underneath ev-
ery E or G order which is intended to pro-
duce a transfer of control each time it is
encountered.

Variable orders: Orders and pseudo-orders which are to be
changed during the course of the calcula-
tion are shown in brackets.

Pseudo-orders: A double vertical line is drawn on the
left of the contents of all storage locations
which are intended never to be obeyed as
orders.

Use of J: When reading the address part of an or-
der the initial orders treat the letter J
as a digit of value 10. Some subroutines
therefore use J for the address 10, thus
saving one row of holes on the tape.

Preset parameters: C(45), C(46) . . . when used as preset pa-
rameters are referred to as H parameter,
N parameter . . .

Control combinations: Any “order” with code letter K or Z is a
control combination. The more common
ones are described in [WWG 1951, Sec-
tion 2-5, pp. 18–19, and in Section 3.1 of
the Tutorial Guide].

[Source: WWG 1951, p. 104]

- 1 -

Code Letters for Initial Orders 2

When an order such as A 50 F or A F is being transferred from the tape to the store,
the first character to be read is the function letter, and the corresponding binary
number is placed by the initial orders in a suitable location for temporary storage.
The next character may be either a digit of the address or a code letter F or D.
These can be distinguished by the fact that F and D correspond to binary numbers
which are greater than ten. The character just read is therefore tested by having
11 subtracted from it; if the result is negative the character must represent a digit
of the address, otherwise it represents a code letter. As the successive digits are
read the address is built up progressively in binary form. When the code letter is
encountered the address and the number representing the function letter are added
together. If the code letter is F the result represents the complete order and is
transferred to the store as it stands. If the code letter is D, 2−16 is added to the
result before it is transferred to the store.

In addition to the code letters F and D so far referred to, there are thirteen other
code letters which may be used to terminate an order. The object of these code
letters is to facilitate the use of subroutines. Each causes the contents of a certain
storage location to be added to the order before it is transferred to the store. The
complete list of code letters is as follows:

Code Location whose content
letter is added to the order Number added

F 41 zero
θ 42 variable
D 43 2−16

φ 44
H 45
N 46
M 47
∆ 48
L 49
X 50

variable

G 51
A 52
B 53
C 54
V 55


Storage location 41 contains zero, so that the code letter F leaves the order un-
changed. Storage location 43 contains 2−16, so that code letter D causes 2−16 to be
added to the order. These two code letters thus have the effect described earlier.

All the above code letters indicate the end of an order, and cause it to be placed
in its correct location in the store. The code letter π causes 2−16 to be added to
the order (in this it resembles D) but must be followed by another code letter to
indicate the end of the order. It is thus possible by using π to cause both 2−16 and
some other number to be added to the order before it is put away in the store.

[Source: WWG 1951, p. 16, with a correction]

- 2 -

Specifications of Library Subroutines

Each subroutine is distinguished by a letter denoting its category and a serial number
within that category. The categories are as follows.

Category Subject
A Floating point arithmetic.
B Arithmetical operations on complex numbers.
C Checking.
D Division.
E Exponentials.
F General routines relating to functions.
G Differential equations.
J Special functions.
K Power series.
L Logarithms.
M Miscellaneous.
P Print and layout.
Q Quadrature.
R Read (i.e., Input).
S nth root.
T Trigonometrical functions.
U Counting operations.
V Vectors and matrices.

In the specifications . . . the following information is given in abbreviated form
immediately beneath the title of each subroutine:

1. Type of subroutine, i.e., whether open, closed, interpretive, or special.

2. Restriction on address of first order. If the word “even” appears it denotes
that the first order must have an even address; if no note appears it indicates
that the address may be either odd or even.

3. Total number of storage locations occupied by the subroutine.

4. Addresses of any storage locations needed as working space by the subroutine.

5. Approximate operating time (not possible to state in all cases).

[Source: WWG 1951, p. 72]

- 3 -

C7 Check function letters, with localized print suppression.

Special; 61 storage locations; time, see Note 5.

Performs a given program order by order, and prints the function letters of those
orders which are drawn from certain specified parts of the store; other orders are
obeyed silently. The store may be divided into four regions, orders in two of which
have their function letters printed.

Preset parameters: 45 H P b F
 See Note 1.46 N P (c− a) F

47 M P (c− b) F
48 ∆ P θ print low

}
See Note 1.

or ∆ θ print high
49 L P m F start at m

Notes

1. The regions of the store are specified by the parameters a, b, c as follows:

(i) n < a

(ii) a ≤ n < b

(iii) b ≤ n < c

(iv) c ≤ n

The subroutine will either “print low,” i.e., print function letters of orders
in (i) and (iii), or “print high,” i.e., print function letters of orders in (ii)
and (iv).

2. Print routines in the original program must be arranged to lie in regions from
which the function letters are not printed. Characters printed by such routines
will appear as figures.

3. A new line of printing is begun at each transfer of control; a clear line is left
where orders have been obeyed silently unless such orders themselves cause
printing to appear on this line.

4. C7 only tests the locations of orders at each transfer of control, so that if con-
trol enters a new region during a consecutive sequence, the mode of operation
does not change immediately.

5. Speed of operation is about 5 orders per second when printing function letters,
30 orders per second when suppressed.

6. C7 must be placed at the end of the orders on the tape. After being read it
will direct control to itself and commence checking at order m.

- 4 -

Program

T Z
0 ()∆ F
1 ()P F
2 Q F
3 A F
4 θ F
5 ∆ F
6 π F
7 K 3000 F
8 P H
9 P N

10 P M

33→ 11 U 26 θ store address of C.O.


Transfer
control

12 S 8 θ
 test for change of mode

13 E 15 θ
14 A 9 θ

13→ 15 S J θ
16 ()E 46 ∆ ∗

17 E 20 ∆
58→ 18 O 4 θ

}
new line

19 O 5 θ
17→ 20 U 37 θ

}
clear top of accumulator

21 S 37 θ
22 A 3 θ

45→ 23 A 26 θ


Checking
cycle, simi-
lar to that
employed in
C11

24 U 26 θ
25 S 26 θ
26 ()A F S.O.
27 U 37 θ

Enter→ 28 A θ
29 S 3 θ
30 ()O 37 θ becomes E 34 θ for suppression
31 E 34 θ
32 A 2 θ
33 E 11 θ

30
31

}
→ 34 U θ

35 S θ
36 A 1 θ
37 ()K 3000 F C.O.
38 U 1 θ
39 G 41 θ
40 A 5 θ

- 5 -

39→ 41 S 1 θ


42 U θ
43 S θ
44 A 2 F
45 E 23 θ

16→ 46 O 6 θ figure shift


Change of mode of operation
from printing to suppressed
or vice versa

47 E 49 ∆

16→ 48 O 7 θ letter shift
47→ 49 U 37 θ

50 S 37 θ
51 S 16 θ
52 A 59 θ
53 U 16 θ
54 S 16 θ
55 S 30 θ
56 A 60 θ
57 U 30 θ
58 E 18 θ

G Z
59 C 35 θ = C 94 θ θ
60 S 12 θ = S 71 θ θ

G K
W 2015 Z = E 28 Z: stops reading of tape and directs
E L control to order 28 with E L in the accumulator.

∗Order 16 takes the following forms:

Printing Suppressed

Print low E 46 θ ←−−→ G 48 θ
Print high G 46 θ ←−−→ E 48 θ

[Source: WWG 1951, pp. 79–80, 118–20]

- 6 -

C10 Numerical check with delayed start and suppression of check
during closed subroutines.

Special; even; 37 + 51 storage locations; time = 1/5 sec per digit printed.

May be applied to a routine in order to print C(Acc) before obeying T orders. It
has a delayed start and will cease checking during each closed subroutine. It may be
used only on programs containing subroutines with at most one program parameter.
If the program has the order A n F in S(n) for a purpose other than entry to a closed
subroutine, C10 will fail at that point.

Preset parameters: 45 H P h F see Note 1
46 N P n F number of digits to be printed
47 M P m F address of order at which checking

starts

Notes

1. Part of the subroutine, 51 orders long, is placed in locations h to (h + 50)
and may be written over a print routine in the master routine in which case
printing from the master routine will be suppressed.

2. A new line of printing is started at each transfer of control.

3. A line feed occurs when a closed subroutine is encountered.

4. The address m of the order at which checking starts must be chosen as de-
scribed in Note 2 of C7.

5. The first number printed by C10 is the numerical representation of the order
at which checking starts.

6. C10 must be placed at the end of the tape and followed by E p K P F, directing
control to the master routine.

7. A T order immediately following a closed subroutine with no program param-
eters will not cause C(Acc) to be printed.

Program

Note: Code letter H refers to locations in the first part of the subroutine and θ to
locations in the second part.

- 7 -

E 25 K
T H

H 0 A 3 F
1 T F dummy print routine
2 E F

10H→ 3 O 2 θ print +
4 E 14 H

31θ → 5 S 6 θ
 form A p F/D if order T p F/D

is encountered
6 E 32 θ
7 S 2 H
8 T 9 H
9 ()π F becomes A p F/D



Print number
transferred
by T order

10 E 3 H test sign
11 T πθ

}
change sign

12 S πθ
13 O H print −

4H→ 14 T πθ
15 S 33 H

 set digit count in 9 H30H→ 16 A 2 F
17 T 9 H
18 A πθ

 multiply by 10/16
19 R 1 F
20 S πθ
21 R D
22 A πθ
23 U θ

 print24 O θ
25 F θ
26 S θ
27 L 4 F
28 T πθ
29 A 9 H

}
digit count

30 G 16 H
31 T πθ clear accumulator
32 E 34 θ to sequence control

33 P N number of digits

16θ → 34 A 2 H


test for order A n F in
S(n), i.e., S.O. = C.O.



Test for
entry to
closed sub-
routines
and obey
them
directly

35 S 12 θ
36 G 19 θ
37 S 2 F
38 E 19 θ
39 O 3 θ line feed
40 A 20 θ

 form A n+ 2 F41 A 12 θ
42 S 26 θ

- 8 -

43 U 12 θ



44 U 47 H
45 S 5 θ form G n+ 1 F
46 T 50 H
47 ()P F = C(Acc.) or A n+ 2 when
48 T 22 θ subroutine is encountered
49 A 40 H
50 ()P F sign of C(Acc.) or G n+ 1 F when

subroutine is encountered

When an order A n F is encountered in n, the order in (n+ 2) is placed in the
C.O. position and control is transferred to (n+ 1) with A 20 θ in the accumulator.
Since there is a G order in (n + 1) control is transferred to the subroutine and the
link which is planted in the subroutine is E 22 θ (or E 23 θ if the subroutine has
one program parameter). When the operation of the subroutine is finished control
is transferred to order 22θ (or 23θ) of C10 and checking recommenced.

T Z
θ 0 ()P F

}
working space
for print cycle1 ()P F

2 Z F
3 ∆ F
4 θ F
5 Q 1 F
6 Q F
7 A M


extracts order at which checking starts

and replaces it by order directing
control to C10 (order 21θ)

8 T 47 H
9 A 15 θ

10 T M
11 O 4 θ carriage return
12 O 3 θ line feed
13 O 9 H figure shift
14 E 25 F

15 E 21 θ
E 7 Z
P F

The orders 7 to 14 are executed once during input, and then written
over by:

T 7 Z
18θ → 7 O 4 θ carriage return

8 O 3 θ line feed
9 S 2 H form A n F when control is transferred

- 9 -

36θ → 10 U 12 θ
11 S 12 θ



C
h

ec
k
in

g
cy

cl
e

si
m

il
ia

r
to

th
at

em
p

lo
ye

d
in

C
11

.

12 ()G 2047 M = A −1 M, becomes select order (S.O.)
13 U 22 θ
14 A 50 H

 test for transfer of control
15 S 2 H
16 G 34 H
17 S 6 θ
18 G 7 θ

36H
38H

}
→ 19 U 50 H

20 S 50 H
Enter→ 21 A 47 H Add “C(Acc.)”

22 ()T M current order (C.O.)
23 U 47 H transfer “C(Acc.)”
24 E 26 θ


test C(Acc.) for sign,

if − send 1/2 to 50H

25 S 3 θ
24θ → 26 S 47 H

27 U 50 H
28 S 50 H
29 A 22 θ

 examine C.O. and test
for T order

30 S 1 H
31 E 5 H

6H→ 32 U 22 θ
33 S 22 θ

32H→ 34 A 12 θ
 sequence control35 A 2 F

36 G 10 θ

During the course of this subroutine the 17 most significant digits of C(Acc.)
are stored in 47 H and are restored when an order from the original program is
executed.

[Source: WWG 1951, pp. 81, 120–2]

- 10 -

D6 Division, accurate, fast.

Closed; 36 storage locations; working positions 6D and 8D;
time = (10m+ 120) msecs, where 2−m−1 ≤ |C(4D)| < 2−m.

Forms C(0D)/C(4D) where C(4D) 6= 0 and 6= −1, and places result in 0D.

Accuracy: maximum error is ±K · 2−35 ± 2−34, where K = quotient.

an+1 = an − cn+1an + cn+1

cn+1 = −anb+ (b− 1), where b is the shifted divisor

i− an → 1/b

cn → 0 an and cn are negative

a0 = 2b− 2
√

2 + 1; therefore cn is negative until process is completed

Program

G K
0 A 3 F

}
plant link

1 T 34 θ
7→ 2 S 4 D


make divisor positive and

change sign of quotient

3 E 13 θ
4 T 4 D
5 S D
6 T D
7 E 2 θ

14→ 8 T 4 D


shift divisor and dividend until
divisor exceeds capacity

9 A D
10 L D
11 T D
12 A 4 D

3→ 13 L D
14 E 8 θ
15 R D
16 U 4 D b− 1 to 4D
17 L D
18 A 35 θ
19 T 6 D a0 to 6D
20 E 25 θ

30→ 21 U 8 D cn+1 to 8D
22 N 8 D −cn+1 · an
23 A 6 D +an
24 T 6 D +an+1 to 6D

20→ 25 H 6 D an+1 to multiplier register

- 11 -

26 S 6 D an
27 N 4 D −(b− 1) · an
28 A 4 D +(b− 1)
29 Y F
30 G 21 θ test� accumulator contains 2−34
31 S D

}
form quotient

32 V D
33 T D
34 ()E F link

35 W 1526 D 3− 2
√

2

[Source: WWG 1951, pp. 83, 125–6]

- 12 -

E2 Exponential, slow.

Closed; 19 storage locations; working positions 0D and 6D; time = 930 msecs.

Forms exp [C(4D)]− 1 and places the result in 4D, −1 ≤ C(4D) < 0.693.

Accuracy: probable error = 2−33.

(ex − 1) to 4D, where x = C(4D)

Uses a recurrence relation zn−1 = zn + z2n
2n+1 starting with z33 = x and ending with

z0 = (ex − 1)

Program

G K
0 A 3 F

}
plant link

1 T 18 θ
2 Y F

 2−n to 6D3 L D
16→ 4 T 6 D

5 H 4 D
 form z2n6 V 4 D

7 T D
8 H 6 D
9 V D z2n/2

n

10 R D z2n/2
n+1

11 A 4 D
}
zn + z2n/2

n+1

12 Y F
13 T 4 D zn−1 to 4D
14 A 6 D shift strobe
15 L D
16 E 4 θ test strobe for end of cycle
17 T D
18 ()E F link

[Source: WWG 1951, pp. 83, 126]

- 13 -

M3 Print heading.

Closed; 10 storage locations (temporarily); working position 0.

Copies information directly from the tape to the teleprinter and may thus be used
to print a heading at the top of a sheet.

Notes

1. M3 is placed at the front of the program tape unless R9 is used, in which case
M3 follows R9. No control combinations need precede M3.

2. M3 is immediately followed by the heading, which may include line feed, car-
riage return, etc., according to the teleprinter code.

3. The heading is followed by blank tape, and the succeeding orders should be
prefaced by a control combination of the form P K T n K.

Program

P F
G KEnter

6
8

→ 0 I F input next symbol
1 A F

 shift ready for printing2 R D
3 L F
4 U F
5 O F print
6 E θ

 test for blank tape7 A 6 F
8 G θ
9 E 8 F return to initial input

E Z
P F

[Source: WWG 1951, p. 91; Cambridge University Archives COMP B, 3 June 1950]

- 14 -

M20 Set parameter value, by means of telephone dial, during input
of orders.

Special; uses no storage space.

If M20 is included at the appropriate point on the input tape, the H-parameter may
be set to d · 2−15 by dialing an integer d. As soon as the first few rows of M20 have
been read the machine stops on a Z-order. Exactly three decimal digits should then
be dialed to specify d.

This subroutine consists largely of control combinations. It requires no storage
space, but uses 22F, 42F, and 43F, normally occupied by orders of the initial input
routine, as working space.

Notes

1. If it is desired to dial more, or less, than three digits the central section of
M20 should be repeated an appropriate number of times, or omitted.

2. A preset parameter other than H may be set by suitably altering the control
combination T 45 K.

Program

P Z
Z K

}
Stop machine; when digit r is dialed set

Transfer Order to T(r − 10)FM 2037 F
G K Copy address (r − 10) into 42
P 10 K Set C(22) = P 10 F
P Z Add C(22) to 42 if (r − 10) < 0;

if (r − 10) = 0 leave unaltered
T 43 K

}
Transfer C(42) to 43

P θ
Z K

 Repeat for second digit dialed


Central
Section

M 2037 F
G K
P 10 K
P Z
T 43 K

}
Multiply C(43) by 10, add C(42), and

place sum in 43P π 0 θ
Z K

 Repeat for final digit dialed
M 2037 F
G K
P 10 K
P Z
T 45 K

}
Multiply C(43) by 10, add C(42), and

place sum in 45P π 0 θ
I 43 K


Reset C(43) to P D, Transfer Order to

T 46 F, and resume normal action of
initial input routine

B 2 F
Q

[Source: WWG 2nd ed., 1957, pp. 154, 190–1]

- 15 -

P1 Print a single positive number (without layout or round-off).

Closed; 21 storage locations; time = (171n+ 10) msecs.

Prints the positive number in 0D to n places of decimals, leaving R · 10n in 0D,
where R is the remainder.

Program parameter:
p A p F

}
orders calling

in P1p+ 1 G s F
p+ 2 P n F

Notes

1. Teleprinter must be on figure shift.

2. Layout must be separately controlled.

3. Round-off is not included.

Program

G K
0 A 18 θ

}
Plant link

1 U 17 θ
2 S 20 θ

}
Plant S m+ 2 F

3 T 5 θ
4 H 19 θ
5 ()P F (1) −n× 2−15 to Acc. (2) Count digits.

16→ 6 T 5 θ


Digit cycle

7 V D Multiply
8 U F

}
Print

9 O F
10 F F

}
Check and remove

11 S F
12 L 4 F Shift
13 T D
14 A 5 θ

 Count digits15 A 2 F
16 G 6 θ
17 ()E F Link

18 U 3 F
19 J F = 10/16
20 M 1 F

[Source: WWG 1951, p. 92; Cambridge University Archives COMP B]

- 16 -

P6 Print short positive integer.

Closed; 32 storage locations; working positions 1, 4, and 5; time = about 900
msecs.

Prints 2−16 · C(0) with suppression of nonsignificant zeros but without layout.

Program

G K
0 A 3 F

}
Plant link

1 T 25 θ
2 H 29 θ

 Multiply by 216/1053 V F
4 T 4 D
5 A 3 θ

}
V F = −1/16 to S(0)

6 T F
7 H 30 θ Set multiplier
8 S 6 θ Set digit count

24→ 9 T 1 F Digit count


Digit cycle

10 V 4 D
}

Multiply
11 U 4 D
12 A F

} Test for first
non-zero
digit13 G 26 θ

14 T F
}

Clear Acc. and S(0)∗
15 T F
16 O 5 F Print
17 A 4 D

 Check and remove18 F 4 F
19 S 4 F

28→ 20 L 4 F Shift
21 T 4 D
22 A 1 F

 Count digits23 S 3 θ
24 G 9 θ
25 ()E F Link

13→ 26 S F Add 1/16
 Suppress zero27 O 31 θ Space

28 E 20 θ

29 J 995 F ≈ 216/105

30 J F = 10/16
31 φ F Space

∗ S(0) becomes cleared when the first non-zero digit is encountered, thus pre-
venting the suppression of later zeros.

[Source: WWG 1951, pp. 92; Cambridge University Archives COMP B]

- 17 -

P7 Print positive integer up to 10 digits.

Closed; even; 35 storage locations; working position 4D; time = approx. 1.8
sec.

Prints 234 · C(0D) with zero suppression but without layout.

Notes

1. Teleprinter must be on figure shift.

2. Layout must be separately controlled.

3. C(0D) must be positive and less than 1010 · 234.

4. If the number to be printed is less than 109, the left-hand zeros are replaced
by spaces. In any case, 10 positions on the paper are used.

Program

G K
0 A 3 F

}
plant link

1 T 26 θ
2 H 28πθ

 multiply by 234/1010 and add 2−34
3 N D
4 Y F
5 L D
6 T 4 D
7 S 27 θ

}
−1/32 to 0

8 T F
9 H 8 θ set multiplier

10 S 8 θ set digit count
25→ 11 T 1 F digit count



digit cycle

12 V 4 D multiply
13 A F

 test for first
nonzero digit∗14 G 31 θ

15 S F
16 L D shift
17 U F

}
print

18 O F
19 F F

}
check and remove

20 S F
21 L 4 F shift

34→ 22 T 4 D
23 A 1 F

 count digits24 A 27 θ
25 G 11 θ
26 () link

- 18 -

T 28πZ
 †P F

T 27 Z
27 P 1024 F
28 P 610 D

}
= −233/1010

29 θ 524 D
30

31 ! F
14→ 32 O 30 θ space

 suppress zero33 S F add 1/32
34 L 8 F shift
35 E 22 θ

∗C(0) = −1/32 until first nonzero digit is printed, when C(0) becomes positive,
thus preventing the suppression of later zeros.

†These symbols appear on the tape and serve merely to clear 28D, thus ensuring
that the sandwich digit between 28 and 29 is zero, before further orders are read.

[Source: WWG 1951, pp. 92, 141–2]

- 19 -

P14 Print signed decimal with round-off and digit check. Layout
controlled by program.

Closed; 46 storage locations.

Prints the decimal number in C(0D), rounded-off. Digit spacing, number of digits
printed and layout are determined by a program parameter.

Preset parameters: 45 H A m D round-off order

Program parameter:

p A p F
}

orders calling
in P14p+ 1 G s F

p+ 2 P x F
or K 4096+x F Layout constant: see note 2.

Notes

1. Figure shift is called during the input of orders.

2. The number of digits and their spacing is determined by the program param-
eter, which is calculated as in note 5. Carriage return and line feed will occur
before the number is printed if K 4096 F is added to this layout constant.
Each number is followed by a space.

3. If the F order shows an error a line feed will occur and the next digit printed
may be in error.

4. Negative numbers are preceded by a negative sign, positive numbers by a
space.

5. The digit layout is determined by the program parameter P x F, where x may
be obtained as follows. Imagine the printed characters, including digits and
spaces (only single spaces are permissible) laid out in the form below, starting
with the most significant digit at the left-hand end. Then add together the
numbers below the spaces, and the number above the last digit; the sum is x.

81
92

4
09

6
2
04

8
1
02

4
5
12 2
56

1
28 64 3
2

16 8 4 2 1

24
5
76

12
28

8
6
14

4
3
07

2
15

36
76

3
3
84

1
92 96 48 24 1
2 6

For example: (i) to print 10 digit numbers with spaces after the 3rd, 6th,
and 9th digits, x = 6144 + 384 + 24 + 4 = 6556; (ii) to print 8 digit numbers
with spaces after the 4th and 5th digits, x = 3072 + 768 + 32 = 3872.

- 20 -

Program

O 40 K
}

figure shift during input
π F
T Z

0 A 45 θ
1 U 4 θ form A n+ 2 F
2 A 22 θ
3 T 39 θ form link
4 ()A F = A n+ 2 F or layout count
5 E 8 θ
6 O 40 θ carriage return
7 O 41 θ line feed

5→ 8 T 4 θ layout count in 4θ
9 A D

10 E 15 θ test sign of C(0D)
11 T D

}
reverse sign

12 S D
13 O θ print −
14 E 16 θ

10→ 15 O 42 θ print space
14→ 16 P H round-off order

17 T D
18 H 44 θ
19 A 4 θ

35
38

}
→ 20 T 4 θ

21 V D multiply by 10/16
22 U 1 F


print digit and check

23 O 1 F
24 F F
25 S F
26 G 29 θ
27 S 43 θ
28 G 30 θ

26→ 29 O 41 θ
28→ 30 A 43 θ

31 L 4 F
32 T D
33 A 4 θ


layout count

34 L D
35 E 20 θ
36 O 42 θ
37 L D
38 G 20 θ
39 ()E F link

- 21 -

40 θ F carriage return
41 ∆ F line feed
42 φ F space
43 Q F
44 J F
45 P 2 F

[Source: WWG 1951, pp. 94, 143–4]

- 22 -

R1 Input a sequence of signed long decimal fractions.

Closed; 55 storage locations; working positions 0, 1, 4, 5, and 6.

Given a sequence of numbers punched as decimals followed by sign, this subroutine
places these numbers in pD, (p+2)D, (p+4)D, . . . and returns control to the master
routine when F appears on tape.

Preset parameters: 45 H
}

positions are used by subroutine
46 N

Program parameter:
m A m F

}
orders calling

in R1m+ 1 G s F
m+ 2 T p D

Notes

1. Decimal point is immediately before first digit punched.

2. Any number of digits up to 10 may be punched; more will exceed the capacity
of the accumulator.

3. Blank or erased tape is treated as F.

Program

G K
T 45 K

45F P 32 θ H parameter
46F P 47 θ N parameter

T Z
0 A 3 N

}
plant A m+ 2 F

1 U 4 θ
2 A 4 N

}
plant link

3 T 9 H
4 ()A F (i) A m+ 2 F (ii) digit count

35→ 5 T H plant transfer order
6 T D

}
clear 0D and 4D

7 T 4 D
8 A 5 N

}
reset switch

9 T 13 θ
10 H 2 N set multiplier
11 S 6 N set digit count†

24→ 12 T 4 θ digit count


13 ()I F or T F when switched∗

14 A F
15 S 6 N

}
test symbol for

+, −, or F16 E 4 H

- 23 -

17 T 6 F clear accumulator



digit cycle18 V 4 D multiply previous digits
19 L 8 F shift
20 A D add new digit
21 T 4 D

46→ 22 A 4 θ
 count digits23 A 7 N

24 G 12 θ
25 H 4 D


multiply by 234/1010

26 N N
27 R 128 F
28 R 128 F
29 V 1 N
30 L D
31 Y F

H 32 ()T F transfer to store
1 33 A H change transfer order
2 34 A 3 N
3 35 E 5 θ

16→ 4 36 S 6 N


+, −, and F

5 37 E 42 θ test for −
6 38 A 7 N
7 39 E 44 θ test for +
8 40 T 6 F F: clear accumulator
9 41 ()E F link

37→ 42 S 4 D
}

negative:
change sign

 + and −
43 T 4 D

39→ 44 A 2 N
}

set switch to TF
45 T 13 θ
46 E 22 θ

N 47 P 610 D
1 48 Z 1523 D
2 49 T F = 10/32
3 50 P 2 F
4 51 U 1 F
5 52 I F
6 53 P 5 D
7 54 P D

∗Order 13 is I F during input of punched digits, T F for dummy zeros which
make up remainder of 10 digits.

†Digit count is actually set to 11 because + or − sign is counted as a digit.

[Source: WWG 1951, pp. 96, 146–8]

- 24 -

R2 Input of positive integer during input of orders.

Special; 15 storage locations (temporarily);

Reads the input tape and converts the decimal integers thereon to binary form
multiplied by 2−34 and places these in sequence in storage locations mD, (m+ 2)D,
(m+ 4)D, etc.

Parameter: T m D must follow the subroutine.

Notes

1. After the subroutine T m D is punched, followed by the integers, each termi-
nated by F with the exception of the last one which is terminated by π T Z.

2. After the integers have been read, π T Z returns control to the initial orders
and subsequent orders read from the tape will be written over R2.

Program

G K
9→ 0 T 20 F



digit
cycle

1 V D
}

10 · (partial sum)∗
2 L 8 F
3 A 40 D add new digit

14→ 4 U D
}

New partial sum to 0D† and to
final destination of number



number
cycle

5 ()T F
6 I 40 F

}
read next symbol

7 A 40 F
8 S 39 F subtract 11 · 2−16
9 G θ test for F

10 S 2 F subtract 2 · 2−16
11 G 23 F test for π (if π return
12 to initial orders)
13 A 5 θ

}
change destination of integer

Enter→ 14 T 5 θ
15 E 4 θ

Followed on tape by:

E 13 Z on subroutine tape
T m D punched by user

Hence control enters subroutine at order No. 13, with T m D in the accumulator.

∗The multiplier register contains 10/32 throughout input of orders and operation
of this subroutine.

†When obeyed for the first time in each number cycle, this order clears 0D.

[Source: WWG 1951, pp. 96–7, 148]

- 25 -

R3 Input of one signed long decimal fraction.

Closed; even; 41 storage locations; working positions 4D and 6D.

Reads one fraction punched in decimal form followed by sign, and places it in 0D.

Program

G K
T 45 K

H P 26 θ
T Z

0 A 3 F
}

Plant link
1 T H
2 T D

}
Clear 0D and 4D

3 T 4 D
4 A 6 H

}
Reset switch

5 T 9 θ
6 H 1 H Set multiplier
7 S 4 H Set digit count†

80→ 8 T 6 F Digit count


Digit cycle

9 ()I F or TF when switched∗

10 A F
11 S 4 H

}
Test for

sign symbol12 E 7 H
13 T 7 F Clear acc.
14 V 4 D Mult previous digits
15 L 8 F Shift
16 A D Add new digit
17 T 4 D

40→ 18 A 6 F
 Count digits19 A 5 H

20 G 8 θ
21 H 2πH


Multiply by
234/1010

22 N 4 D
23 L D
24 Y F
25 T D Transfer to 0D

H 26 () Link

26 T 28πZ
 ‡P F

T 27 Z
1 27 T F = 10/32
2 28 P 610 D

}
= −233/1010

3 29 θ 524 D
4 30 P 5 D
5 31 P D
6 32 I F

- 26 -

12→ 7 33 S 4 H
}

Test +
or −


Sign
symbol

34 G 37 θ
35 S 4 D

}
− change sign

36 T 4 D
34→ 37 T 7 F Clear Acc.

38 A 1 H
}

Set switch
to TF39 T 9 θ

40 E 18 θ

∗Order 9 is IF during input of punched digits, TF for dummy zeros which make
up remainder of 10 digits.

†Digit count is actually set to 11 because sign symbol is counted as a digit.
‡These symbols appear on the tape and serve merely to clear 28D, thus ensuring

that the sandwich digit between 28 and 29 is zero, before further orders are read.

[Source: WWG 1951, p. 97; Cambridge University Archives COMP B]

- 27 -

R4 Input of one signed integer.

Closed; 22 storage locations; working positions 4, 5, and 6.

Reads one integer y punched in decimal form followed by sign, and places y · 2−34
in 0D.

Notes

1. |y| < 2−34

2. R4 is applicable to either long or short numbers; in the latter case y · 2−16 will
be left in 0 provided that −216 ≤ y < 216.

Program

G K
0 A 3 F

}
Plant link

1 T 21 θ
2 T 4 D Clear 4D
3 H 6 θ Set multiplier
4 E 11 θ

5 P 5 D
6 J F = 10/16

15→ 7 T 6 F Clear acc.


Digit cycle

8 V D Mult. previous digits
9 L 4 F Shift

10 A 4 D Add new digit
4→ 11 T D Transfer to 0D

12 I 4 F
}

Read next symbol
13 A 4 F
14 S 5 θ

}
Test for sign symbol

15 G 7 θ
16 S 5 θ

}
Test + or −

 Sign symbol17 G 20 θ
18 S D

}
− change sign

19 T D
17→ 20 T 6 F Clear acc

21 ()E F Link

[Source: WWG 1951, p. 97; Cambridge University Archives COMP B]

- 28 -

R9 Input of positive integers during input of orders. Standard
form for regular use.

Special: 15 storage locations.

The actual orders of this subroutine are identical with those of R2, but R9 is intended
always to be placed in locations 56 to 70 inclusive, and to remain there throughout
the input of a whole program, being used any number of times. Each time it is used
it will read a sequence of positive decimal integers and place them in consecutive
long storage locations.

Notes

1. The subroutine tape commences with P K T 56 K, so that it may be copied
immediately at the head of the tape. It does not have E 13 Z at the end, so
that it is not automatically obeyed after being read.

2. R9 is called in by the control combination E 69 K T m D. This is followed by
the integers each terminated by F except the last, which is terminated by π
to return control to the initial orders. After this must be punched a control
combination to restore the transfer order, e.g., T Z. The integers will be placed
in mD, (m+ 2)D, (m+ 4)D, etc.

3. Negative integers may be read if 235 is added to each before punching.

[Source: WWG 1951, p. 98]

- 29 -

S2 Square root, fast.

Closed; 22 storage locations; working position 0D; time = approx.
(36n+ 180) msecs, where (21

4
)−n−1 < C(4D) < (21

4
)−n.

Forms
√

C(4D) where C(4D) > 0 and places result in 4D.

Accuracy: Number of significant figures in result is two less than number of sig-
nificant figures in argument.

Note

If C(4D) = 0, subroutine continues to cycle indefinitely.

Repetitive
process:

[
an+1 = an − 0.5ancn a0 = C(4D) an →

√
C(4D)

cn+1 = c2n(0.25cn − 0.75) c0 = C(4D)− 1 cn → 0

Program

G K
0 A 3 F

}
plant link

1 T 20 θ
2 A 4 D

 form c03 S 9 θ
4 A 6 θ

19→ 5 U D
}
cn to R



repetitive cycle

6 H D
7 R 1 F

 (0.25cn − 0.75) to 0D8 S 21 θ
9 T D

10 N 4 D
 an+1 to 4D

11 R D
12 A 4 D
13 Y F
14 T 4 D
15 V D

 form cn+1
16 T D
17 V D
18 Y F
19 G 5 θ test for cn+1 = 0
20 ()E F link

21 S F = 3/4

[Source: WWG 1951, pp. 98, 149–50]

- 30 -

S3 Cube root.

Closed; 25 storage locations; working positions 4, 5, 8, and 9; time = approx.
1 sec.

Forms cube root of C(6D) and places result in 0D. C(6D) may be positive or negative
and is left unchanged at the end.

Root is formed digit by digit, using a shifting (negative) strobe.

Program

G K
0 A 3 F

}
plant link

1 T 20 θ
2 T D set first trial (i.e., zero)
3 S 24 θ

}
set strobe

19→ 4 T 4 D
5 H D


form (trial)3 − C(6D)

6 V D
7 Y F
8 T 8 D
9 V 8 D

10 S 6 D
11 E 21 θ
12 T 8 D

 increase trial
13 S 4 D

23→ 14 A D
15 T D
16 A 4 D

 shift strobe
17 R D
18 Y F
19 G 4 θ
20 ()E F link

11→ 21 T 8 D
 decrease trial22 A 4 D

23 G 14 θ

24 I F = 1/2

[Source: WWG 1951, pp. 99, 150]

- 31 -

T1 Cosine, rapid..

Closed; even; 44 storage locations; working position 0D; time = 82 msecs.

Forms 0.5 cos[2 · C(4D)] where |2 · C(4D)| ≤ π/2, and places result in 4D.

Accuracy: maximum error = 2−33.

Program

0 to 14 R2 R2 is included in the T1 tape
temporarily

T 32πθ
32D 1,614 F


coefficients in power series

34D 73,454 F
36D 2,423,967 F
38D 54,539,267 F
40D 763,549,741 F
42D 5,726,623,061 π

T Z
0 A 3 F

}
Plant link

1 T 30 θ
2 H 4 D

 Square argument3 V 4 D
4 Y F
5 T 4 D
6 H 4 D
7 N 32πθ
8 A 34πθ C(A) = a12 − a14x2
9 T D

10 N D
11 A 36πθ C(A) = a10 − a12x2 + a14x

4

12 T D
13 N D
14 A 38πθ C(A) = a8 − a10x2 + · · ·
15 T D
16 N D
17 A 40πθ C(A) = a6 − a8x2 + · · ·
18 T D
19 N D
20 A 42πθ C(A) = a4 − a6x2 + · · ·
21 T D
22 N D
23 Y F C(A) = −a4x2 + a6x

4 − · · ·
24 T D

- 32 -

25 N D
26 S 4 D
27 A 31 θ C(A) = 1/2− x2 + a4x

4 − · · ·
28 Y F
29 T 4 D
30 ()E F Link

31 I F = 1/2
T 44 Z

[Source: WWG 1951, p. 99; Cambridge University Archives COMP B]

- 33 -

Demonstration Programs

Arithmetic

This program illustrates various arithmetic instructions on the Edsac simulator.

T 64 K Set load point
64 Z F Stop
65 A 96 F acc = 33

 Short integer
arithmetic

66 A 97 F acc = acc + 46 = 79
67 S 98 F acc = acc− 96 = −17
68 T F
69 H 100 F

}
acc = 3

16 ×
7
8 = 21

128

}
Short fractions

70 V 101 F
71 T F
72 H 104 D

}
acc = 1

3 ×
1
3 = 1

9

 Long fractions73 V 104 D
74 Y F Round acc to 34 binary places
75 A 106 D acc = acc− 1

9 = 0 to 34 b.p.
76 T F
77 H 99 F

}
acc = (5×2−16)2 = 25×2−32


Integer

multiplication
78 V 99 F
79 L 64 F

}
acc = acc× 216 = 25× 2−16

80 L 64 F
82→ 81 L D

}
Left shift till acc negative

}
Shift loop

82 E 81 F
83 T D

 Collate
84 H 104 D Collate 1

3 and −1
9

85 C 106 D acc = 0.01000001000001 . . .
86 Z F

T 96 K Set load point
96 P 16 D = 33

 Integer
constants

97 P 23 F = 46
98 P 48 F = 96
99 P 2 D = 5

100 E F 0.00112 = 3
16

 Short fractions
101 K F 0.11102 = 7

8
102 ∆ F 1.10002 = −1

2
103 I F 0.10002 = 1

2
104 H 682 D

}
0.0101 . . . = 1

3

 Long fractions105 T 682 D
106 K 455 F

}
0.111000 . . . = −1

9107 C 455 F
E 64 K

}
Enter at location 64

P F

[Author: M. Campbell-Kelly, 1998]

- 34 -

Cubes

Prints a table of the cubes of Nichomachus.

Table of routines

Routine Location of Number of storage
first order locations occupied

P6 (print) 56 32
Master 88 —

Make-up of program tape

space P K

T 56 K

P6

space P Z

Master

E Z P F

Master routine

G K Set θ-parameter
Enter→ 0 Z F Stop

1 O 34 θ Figure shift
25→ 2 O 35 θ

}
New line

3 O 36 θ
4 T F

 k to 0F5 A 27 θ
6 T F
7 A 7 θ

}
Print 0F using P6

8 G 56 F

P6→ 9 T 27 θ Zero to k
10 A 28 θ

 n+ 1 to n11 A 31 θ
12 T 28 θ
13 S 28 θ

}
−n to count

22→ 14 T 30 θ
15 A 29 θ

 m+ 2 to m16 A 32 θ
17 U 29 θ
18 A 27 θ

}
k +m to k

19 T 27 θ
20 A 30 θ

}
Increment count

21 A 31 θ
22 G 14 θ Jump to 14 if count < 0

- 35 -

23 A 33 θ
 Repeat main cycle

while n ≤ 10
24 S 28 θ
25 E 2 θ

26 Z F Stop
27 P D k (n3; = 1 initially)
28 P D n (= 1 initially)
29 P D m (= 1 initially)
30 P F count
31 P D = 1
32 P 1 F = 2
33 P 5 F = 10
34 π F figs
35 θ F cr
36 ∆ F lf

[Author: M. Campbell-Kelly, 1998]

- 36 -

Reciprocals

Prints the reciprocals of the integers 1 to 10.

Table of routines

Routine Location of Number of storage
first order locations occupied

D1 (divide) 56 36
P1 (print) 92 21
Master 113 —

Make-up of program tape

space P K

T 56 K

M3

θ∆*RECIPROCALSθ∆π Table heading

space P Z

T 56 K

D6

space P Z

P1

space P Z

Master

E Z P F

Master routine

G K
T 47 K

}
Set M parameter

P 21 θ
T Z

0 S 1 M
}

Set count to −9
19→ 1 T 6 M

2 A 2 M
}

1 · 2−4 to 0D
3 T D
4 A 7 M

}
n · 2−4 to 0F

5 T 4 D
6 A 6 θ

}
Set 0D to 0D/4D (ie. 1/n)

using subroutine D67 G 56 F

8 O 3 M
}

Output new line
9 O 4 M

D6→ 10 O 5 M Output decimal point

- 37 -

11 A 11 θ
}

Print 0D
using subroutine P112 G 92 F

13 P 10 F Parameter for P1 (10 dec. places)
P1→ 14 A 7 M

 Increment n15 A 2 M
16 T 7 M
17 A 6 M

 Increment and test counter18 A M
19 G 1 θ

20 Z F Stop

M 0 P D = 1
1 P 4 D = 9
2 Q F = 1 · 2−4
3 θ F carriage return
4 ∆ F line feed
5 M F decimal point
6 P F count
7 W F = n (= 2 · 2−4 initially)

[Author: M. Campbell-Kelly, 1990]

- 38 -

Hello World

Prints “HI” on the teleprinter.

T 64 K Load from location 64

G K Set θ parameter

Start→ 0 Z F Stop

1 O 5 θ Letter shift

2 O 6 θ Print “H”

3 O 7 θ Print “I”

4 Z F Stop

5 * F Letters

6 H F “H”

7 I F “I”

E Z
 Enter at location 0θ

P F

[Author: M. Campbell-Kelly, 1990]

- 39 -

Print Primes

Prints the primes of the odd integers from 5 up to 4 decimals digits, until stopped
by the operator.

n = number being tested
m = number being tested as a factor
p = position on line of printed page
d = digit counter

31 T 107 S As required by initial input
32 O 92 S Figures

87→ 33 O 93 S Line feed
}

New line
34 O 94 S Carriage return
35 S 5 S

}
Set position count, p = −5

36 T 6 S
86→ 37 O 95 S

}
Double space

38 O 95 S
106→ 39 T 7 S



Test whether m is a
factor of n (see note 2)

40 A 96 S
41 R 4 S

43→ 42 S 97 S
43 E 42 S
44 L 4 S

46→ 45 A 97 S
46 G 45 S
47 S 98 S
48 G 100 S
49 T 7 S

 m+ 2 to m
50 A 97 S
51 A 4 S
52 T 97 S
53 H 97 S


If m >

√
n then

stop testing

54 N 97 S
55 L 64 S
56 L 64 S
57 A 96 S
58 E 39 S
59 T 7 S

 n is prime;
transfer to 1S for printing60 A 96 S

61 U 1 S
62 A 4 S

}
n+ 2 to n

63 T 96 S
64 A 99 S

}
3 to m

65 T 97 S
66 S 88 S

}
Set digit count, d = −4

83→ 67 T 7 S

- 40 -

68 H 91 S


Print digit

69 A 1 S
70 E 72 S

73→ 71 V 91 S
70→ 72 S 89 S

73 E 71 S
74 A 89 S
75 T L
76 O S
77 H 90 S
78 V 1 S
79 L 4 S
80 T L
81 A 7 S

 d+ 1 to d82 A 98 S
83 G 67 S
84 A 6 S

 p+ 1 to p85 A 4 S
86 G 36 S
87 E 33 S

88 P 2 S = 4 (digit count)


Constants

89 P 500 S = 1000


Used for binary
to decimal
conversion

90 J S = 10/16
91 P 16 S = 32
92 π S figure shift
93 θ S carriage return
94 ∆ S line feed
95 φ S space
96 P 2 L n (= 5 initially)
97 P 1 L m (= 3 initially)
98 P L = 1
99 P 1 L = 3

48→ 100 T 7 S
 3 to m


If n not a prime

101 A 99 S
102 T 97 S
103 A 4 S

 n+ 2 to n104 A 96 S
105 T 96 S
106 E 39 S

Notes

1. The odd numbers, n, beginning from 5 are tested.

2. Testing is done by effecting division by repeated subtraction.

- 41 -

3. Factors tested are 3, 5, 7, . . . m, where m need not exceed
√
n.

4. L or S is treated as the least significant digit.

[5. Location: 4S contains 2; 5S contains 10; 6S contains p; 7S contains d.]

[6. The annotation has been augmented to correspond to the original flow dia-
gram.]

[7. Order 85 has been changed from A 98 S to A 4 S, to correspond to the original
specification in which 5 numbers per row are printed.]

[Author: D. J. Wheeler, c.May 1949]

[Source: “The EDSAC Demonstration”, Report of a Conference on High-Speed Cal-
culating Machines (1949), reprinted in B. Randell, Origins of Digital Computers
1982, Springer, New York, pp. 423–9. With additional annotation]

- 42 -

Print Squares

Prints the squares and first differences of the integers 1 to 100.

31 T 123 S As required by initial input
Enter→ 32 E 84 S Jump to 84

33 P S Used to keep count of subtractions
34 P S Power of 10 being subtracted
35 P 10000 S


For use in the decimal

binary conversion
36 P 1000 S
37 P 100 S
38 P 10 S
39 P 1 S
40 Q S
41 π S Figures
42 A 40 S
43 φ S Space
44 ∆ S Line feed
45 θ S Carriage return
46 O 43 S
47 O 33 S
48 P S Becomes number to be printed

94→ 49 A 46 S
}

Put O 43 S in 65S
50 T 65 S

72→ 51 T 129 S Clear 129S
52 ()A 35 S

}
Put power of 10

in 34S53 T 34 S
54 E 61 S Jump to 61

63→ 55 T 48 S
56 A 47 S
57 T 65 S

 To control printing58 A 33 S
59 A 40 S
60 T 33 S

54→ 61 A 48 S
62 S 34 S



Print contents
of 48S

63 E 55 S
64 A 34 S
65 P S
66 T 48 S
67 T 33 S
68 A 52 S
69 A 4 S
70 U 52 S
71 S 42 S
72 G 51 S
73 A 117 S
74 T 52 S
75 ()P S End print [link]

- 43 -

76 P S Becomes x
77 P S Becomes x2

78 P S Becomes x2

79 P S Becomes ∆x2

80 E 110 S
81 E 118 S
82 P 100 S
83 E 95 S

32→ 84 O 41 S Set on print figures
120→ 85 T 129 S Clear 129S

86 O 44 S
87 O 45 S
88 A 76 S

 x+ 1 to 76S and 48S
89 A 4 S
90 U 76 S
91 T 48 S
92 A 83 S

}
Set switch Z

93 T 75 S
94 E 49 S

1: 75→ 95 O 43 S
}

Double space
96 O 43 S
97 H 76 S

 x2 · 215 to 77S

98 V 76 S
99 L 64 S

100 L 32 S
101 U 77 S
102 S 78 S

}
∆x2 to 79S

103 T 79 S
104 A 77 S

 x2 to 48S and print105 U 78 S
106 T 48 S
107 A 80 S
108 T 5 S
109 E 49 S

2: 75→ 110 O 43 S
}

Double space
111 O 43 S
112 A 79 S

 ∆x2 to 48S and print
113 T 48 S
114 A 81 S
115 T 75 S
116 E 49 S

117 A 35 S

- 44 -

3: 75→ 118 A 76 S
 Test for finish

119 S 82 S
120 G 85 S
121 O 41 S
122 Z S

[Author: M. V. Wilkes, c.May 1949]

[Source: “The EDSAC Demonstration”, Report of a Conference on High-Speed Cal-
culating Machines (1949), reprinted in B. Randell, Origins of Digital Computers
1982, Springer, New York, pp. 423–9. With additional annotation]

- 45 -

The TPK Algorithm

Introduction

In their report “The Early Development of Programming Languages” (1976) Knuth
and Trabb Pardo argue that the best way to understand a programming language
is to study specimen programs; this communicates the flavor of a language far more
effectively and concisely than a lengthy programming manual. In their report the
authors introduce the TPK algorithm.

The TPK algorithm is a short program that demonstrates many of the charac-
teristic features of a program; by coding TPK in a variety of languages Trabb Pardo
and Knuth have been able to contrast a number of historic programming languages
in a most succint yet informative fashion.

A version of the TPK algorithm written in Pascal is given below, together with
specimen input and output. The TPK algorithm demonstrates the following points:
the use of variables, constants and a vector; a program loop proceeding by positive
increments and another by negative increments; accessing successive vector elements;
a conditional statement; built-in functions, such as square-root and absolute value;
input-output procedures; a user written procedure. The program is quite short and
would probably have taken between a few seconds and a couple of minutes to run
on a first-generation computer, depending on how fast the computer was and how
effective the language and its translator.

Of course TPK does not actually do anything useful, but it would be difficult
to devise a more illustrative program using fewer statements.

Pascal program:

program TPK(input, output);
function f(t: real): real;
begin
f := sqrt(abs(t)) + 5 ∗ t ∗ t ∗ t

end;
var
i: integer ; y: real ;
a: array[0..10] of real ;

begin
for i := 0 to 10 do read(a[i]);
for i := 10 downto 0 do
begin
write(i:5);
y := f(a[i]);
if y > 400 then writeln(999.0:13:5)

else writeln(y:13:5)
end

end.

- 46 -

Test data:

1.5 8 -6 9.5 2.3 9.9

2.1 -2.1 6 0.001 -0.002

Printed output:

 10 0.04472

 9 0.03162

 8 999.00000

 7 -44.85586

 6 47.75413

 5 999.00000

 4 62.35157

 3 999.00000

 2 -1077.55054

 1 999.00000

 0 18.09974

Reference:

D. E. Knuth and L. Trabb Pardo, “The Early Development of Program-
ming Languages,” pp. 197–213 of N. Metropolis et al (eds.) A History
of Computing in the Twentieth Century, Academic Press, NY, 1980.

The TPK Algorithm for EDSAC

Scaling calculation In the TPK algorithm, for each element t in the vector we
have to calculate

y =
√
|t|+ 5t3 (1)

If we make the assumption that all elements of the vector are less than about 10 in
magnitude then we can rewrite (1) as

y′ = 2−11 ·
√
|t′|+ 5 · 2−1 · t′3 (2)

where y′ = 2−13y and t’ = 2−4t. Now all the numbers handled are less than unity.

Table of routines

Location of Number of storage
Sub-routines etc. first order locations occupied

R1 (read fractions) 56 55
P7 (print integer) 112∗ 35
P14 (print fraction) 147 46
S2 (square root) 193 22
Auxiliary subroutine 215 23
Master routine 238 —
∗ first order must be in an even location

- 47 -

Notes By convention the first subroutine is placed in location 56 onward, locations
0 to 55 being occupied by the initial orders and the preset parameters. The vector
is stored as follows: a0 in 20D, a1 in 22D . . . , and a10 in 40D. (The notation nD
means the long location consisting of locations n and n+ 1.) These locations are in
fact occupied by the initial orders during program input, but are overwritten when
the program proper assumes control. This was quite a usual practice in order to
make the most of the storage.

Master routine

G K 1  Control combinations
T 47 K

}
Sets M-parameter 2

P 38 θ
T Z

0 A θ
 Calls in R1 to read vector 31 G 56 F

2 T 20 D Parameter
R1
35

}
→ 3 O 10 M

}
Newline

4 O 11 M
5 T D


Copies count i into OD and

prints it using P7

6 T D
7 A 7 M
8 T F
9 A 9 θ

10 G 112 F

P7→ 11 O 12 M
}

Outputs two spaces
12 O 12 M
13 H 4 M

}
Scales ai by 10/16 4

14 V 40 D
15 T 8 D

 Calls in auxiliary subroutine using 8D
for argument t′ and result y′16 A 16 θ

17 G 215 F
auxil-

iary→ 18 H 8 D


Sets multiplier register to y′

if y′ less than 400 · 2−13,
otherwise 999 · 2−13

19 A 8 D
20 S 5 M
21 G 23 θ
22 H 6 M

21→ 23 T D


Scales multiplier register by 10−4 · 213,
transfers to OD and prints it using P14

24 V 2πM 5

25 T D
26 A 26 θ
27 G 147 F

28 P 3104 F 6

- 48 -

P14→ 29 A 14 θ
 Modify order 14 730 S 9 M

31 T 14 θ
32 A 7 M


Decrement count and branch to
order 3 if positive or zero

33 S 8 M
34 U 7 M
35 E 3 θ
36 Z F Stop
37 P F Filler, to make next location even

M 0 P 4 D
}

1
2 · 10−9

 81 P F
2 T 1714 F

}
10−4 · 213

3 Z 219 D
4 J F 10/16
5 P 1600 D 400 · 2−13
6 P 3996 F 999 · 2−13
7 P 5 F Count i (+10)
8 P D Decrement (+1)
9 P 2 F Modifier

10 θ F Carriage return
11 ∆ F Line feed
12 φ F Space

Notes

The master routine corresponds to the main program of the Pascal version of the
TPK algorithm. Its operation should be reasonably clear from the annotation and
the notes below.

1. The top line, G K, is the control combination to set the θ-parameter for
relocation.

2. The next three lines are used to set the M-parameter so that all constants used
in the program are addressed relative to location m, where m is the value of
the M-parameter. The advantage of this is that if the code for the master
routine changes in length during the program development process, only the
M-parameter has to be changed and the instructions in the program which
refer to constants do not have to be altered.

3. Although the original TPK algorithm uses a for-loop to input the vector, there
was a vector-read subroutine R1 so we have used it.

4. The subroutine R1 inputs fractions so the data has already been scaled by
10−1; hence the scale factor of 10/16. (The input data is shown below.)

5. The M-parameter is set for short numbers (ie. with the length indicator bit
set to zero); the code letter π preceding M overrides this for a long number.

- 49 -

6. The program parameter for P14 controls the print layout; this particular value
gives 9 decimal digits with a space between the 4th and 5th positions.

7. Lines 29–31 are particularly interesting: They modify the array-accessing order
in line 14 by subtracting 2 from the address so that next time round the loop
the array element immediately to the left of the current one is used. This sort
of technique had to be used in most early machines until index registers were
adopted. Incidentally, the program might be improved slightly if it were made
self-initialising; as it is, if it were desired to process another set of data, the
program would have to be reloaded to restore the array accessing order to its
original state.

8. These two pseudo-order pairs are long constants needed for rounding and
for scaling; they were obtained from a list of such useful constants given in
Programming Bulletin No. 3 (11 October 1950).

Auxiliary subroutine

G K
0 A 3 F

}
Plants link 1

1 T 22 θ
2 A 8 D

 Calculates
√
|t′|


|t′| to 4D 2

3 E 6 θ
4 S 8 D
5 S 8 D

3→ 6 T 4 D
7 A 7 θ

}
Calls in S2 to

calculate
√

4D8 G 193 F

S2→ 9 H 8 D


Calculates 5 · 2−1 · t′3 using
add and shift orders 3

10 V 8 D
11 T D
12 V D
13 R D
14 U D
15 L 1 F
16 A D
17 T D
18 A 4 D

 Calculates 2−11
√
|t′|+ 5 · 2−1 · t′3

and stores in 8D

19 R 512 F
20 A D
21 T 8 D
22 ()Z F Return order planted here

Notes

The auxiliary subroutine corresponds to the procedure f in the Pascal version of

- 50 -

TPK; its job is to evaluate equation (2) above. The subroutine uses 8D for the
argument t′ and the result y′. Some explanatory notes follow.

1. Lines 0–1 plant the return link for the Wheeler jump in line 22. Note that
line 22 is filled with a stop order, Z F; this is so that the program will come
to a halt if the return link is put in the wrong place due to a coding error.

2. The coding for absolute value is spelled out in full; the operation was too short
to justify inclusion in the subroutine library.

3. Multiplication by powers of two is done by left and right shift orders; this was
one of the advantages of scaling in powers of two.

Make-up of program tape

space P K 1

T 56 K 2 Program goes into location 56
onwards

R1

P F Extra pseudo-order to make
first location of P7 even

space P Z 3

P7

space P Z

G K T 45 K A 276 D 4 Preset parameter for P14

P14

space P Z

S2

space P Z

Aux Auxiliary subroutine

space P Z

Master Master routine

space P K 5

E 238 K P F 6

Notes

1. The program tape begins with a length of blank leader tape. The initial orders
would make some interpretation of blank tape and the control combination
P K overcomes this by resetting the initial orders to the state they were in
immediately before the blank tape.

2. The control combination T 56 K causes the following program to be placed
in location 56 onwards. (This is broadly equivalent to setting the origin in a
modern assembler with a directive such as “ORG 56”.)

- 51 -

3. The routines are separated by blank tape so that the individual routines can
be identified. Hence the control combination P Z (or P K). (Incidentally, very
early on P Z P Z was used, but it was shortly realized that P Z only was
sufficient (Programming Bulletin No. 5, 15 January, 1951). The action of the
initial orders could be very obscure.

4. The control combinations to set a preset parameter immediately precede a
library subroutine. This sets the H-parameter, but we will forgo the details.

5. Some blank tape is left for the insertion of a “jiffy tape” for program corrections
at the end of the program.

6. The final control combination causes the program to be entered at location 238.
(In a modern assembler we would use something like “ENTER 238”.)

Number sequence for input data: Numbers are punched as decimal fractions
followed by a sign. F is a data terminator.

15+8+6-95+23+

99+21+21-6+0001+

0002-F

Printed output: A single space is left between the fourth and fifth digits of the
right-hand column of the tabulation; this is where the decimal point would go when
the answers are scaled up by 104. Notice also that the zero on the last line of the
tabulation is missing; this is due to a programming limitation in the zero-suppression
coding of the library subroutine P7.

 10 0000 04472

 9 0000 03162

 8 0999 00000

 7 -0044 85586

 6 0047 75414

 5 0999 00000

 4 0062 35157

 3 0999 00000

 2 -1077 55051

 1 0999 00000

 0018 09974

[Source: M. Campbell-Kelly, “Programming the EDSAC: Early Programming Ac-
tivity at the University of Cambridge”, Annals of the History of Computing, Vol. 2
(1980), pp. 7–36]

- 52 -

Initial Orders 1

Notes

1. When the starting button is pressed these orders are placed in locations 0
to 30 and control is set so that the first order obeyed is in location 0.

2. The first order to be punched on the tape must be T n S, where the last order
is to be input to position n− 1. Control is then automatically transferred to
the beginning of the routine after the last order has been input by the initial
input routine.

0 T S
}

Clears accumulator and puts 10/32 in
multiplier register1 H 2 S

2 T S
}

Control switched to 6. Locations 0–3 are
then used as ‘working space’3 E 6 S

4 P 1 S 2−15
}

Constants
5 P 5 S 10 · 2−16

3
30

}
→ 6 T S


Input function digits to their correct digital

position in 0

7 I S
8 A S
9 R 16 S

10 T L
20→ 11 I 2 S


Reads character on the tape and test whether

it is numerically less than 10
12 A 2 S
13 S 5 S
14 E 21 S
15 T 3 S Clears accumulator using 3 as a rubbish dump
16 V 1 S


One stage of the binary-decimal conversion.

New partial address is obtained by taking
ten times old partial address and adding
the next digit

17 L 8 S
18 A 2 S
19 T 1 S
20 E 11 S Transfers control to location 11

14→ 21 R 4 S


Control is transferred to 21 from the order 14
when character read is S or L. When L has
been read the 17th digit of the accumulator
is a 1, when S has been read it is a 0

22 A 1 S
}

The address has been formed ×2−16 and so
needs doubling23 L L

24 A S Forms the complete order in the accumulator
25 ()T 31 S Transfers the order to its final position in store
26 A 25 S


Increases the address specified in order 25

by 1; eg. T 31 S is replaced by T 32 S, and
so on

27 A 4 S
28 U 25 S

- 53 -

29 S 31 S


Tests whether all orders have been taken in.
Location 31 contains orders T (n+ 1) S,
the first order ton be placed in the store:
and so C(Acc) will be positive only when
all orders have been taken into the store

30 G 6 S

End of initial orders

31 T (n+1) S The first order to be placed in the store

[Source: D. J. Wheeler, “Programme Organisation and Initial Orders for the ED-
SAC”, Proceedings of the Royal Society A, Vol. 202, pp. 573–89, 1950; and “The ED-
SAC Demonstration”, Report of a Conference on High-Speed Calculating Machines
(1949), reprinted in B. Randell, Origins of Digital Computers 1982, Springer, New
York, pp. 423–9. With additional annotation]

- 54 -

Initial Orders 2

0 ()T F
}

These orders cause control to be transferred
to 20. They are not used after the start,
but their locations are used as working
space.

1 ()E 20 F

2 P 1 F
}

These are constants which are intended to be
left here unaltered in any program.3 U 2 F

12→ 4 A 39 F


Input of address. This group of orders is
entered at 8 with the accumulator empty,
so that 0 is cleared. The next digit on the
tape is taken in and tested to see if it is
less than eleven; if so it is doubled and
added to ten times the content of 0, the
sum being sent back to 0. The next digit is
read, tested, etc., and this is continued
until the whole address has been formed;
the next digit read, x, is greater than ten
and so corresponds to a code letter.

5 R 4 F
6 V F
7 L 8 F

28
38

}
→ 8 T F

9 I 1 F
10 A 1 F
11 S 39 F
12 G 4 F

13 L D


These test to see if x is greater than sixteen.
If it is, the order A(24 + x)F is formed and
planted in 20. If x is sixteen or less a
switch order E(16 + x)F is formed and
planted in 20.

14 S 39 F
15 E 17 F
16 S 7 F

15→ 17 A 35 F
18 T 20 F

19 A F This adds the address, which is always
positive, into the accumulator.

20 ()H 8 F This order places 10/32 in the multiplier
register during the start and is later
replaced by a manufactured one which
either adds to the accumulator the number
determined by x, or switches control to an
address determined by x.

21 A 40 F This adds in the function digits of the order
so the accumulator now contains the order
from the tape plus the number selected
by x.

22 ()T 43 F This (the transfer order) transfers the
assembled order to its final place in the
store.

- 55 -

23 A 22 F
 These orders increase the address specified in

the transfer order by unity.24 A 2 F
31→ 25 T 22 F

26 E 34 F Transfers control to 34.

20→ 27 A 43 F
}

Control is switched to these orders by 20
when π has been read from the tape. They
add 2−16 to the address (which is in the
accumulator) and transfer control to 8.
The address now refers to a long storage
location.

28 E 8 F

20→ 29 A 42 F This adds the address in 42 to the accumulator.

20→ 30 A 40 F This adds the function digits of the order to
the accumulator. The result is that the
number in the accumulator is positive if the
order has function digits represented by T
or E, while it is negative in the case of G.

31 E 25 F


If the accumulator is positive, the order in
the accumulator replaces the order in 22; if
negative the accumulator contains the
address specified in order 22 which is then
put in 42 (the storage location
corresponding to θ).

20→ 32 A 22 F
33 T 42 F

26→ 34 I 40 D


These take in the function digits, shift them
to their correct place and transfer them
to 40. The order in 35 is also used as a
constant.

35 A 40 D
36 R 16 F
37 T 40 D
38 E 8 F

39 P 5 D A constant used in the input of the address.
It equals 11 · 2−16

40 ()P D A constant used during the start. It equals 2−16

When the starting button is pressed, the initial orders are placed in storage loca-
tions 0–40 and control transferred to 0. The first orders to be executed are the
following:

0 T F clears accumulator

1 E 20 F transfers control to 20
20 H 8 F places 10/32 in multiplier register

21 A 40 F adds 2−16 to accumulator

22 T 43 F
transfers 2−16 to 43 (the storage location

corresponding to D).

- 56 -

23 A 22 F
 increase order 22 to T 44 F24 A 2 F

25 T 22 F

The initial input is now ready to take in orders; the first part of the input tape
is blank so that the first code letter is a space which corresponds to 16; control is
therefore switched from 20 to 32, and the contents of 22 are transferred to 42. This
action will continue, the spaces being treated alternately as function digits and code
letters. The first symbols encountered will be P and F. There are two possibilities,
either

1. the last space has been treated as a function digit in which case the word read
is “space” Z, which causes the address (n − 1) to be placed in 42, where n is
the address in the Transfer Order; or

2. the last space was treated as a code letter, in which case the word read is PZ,
which causes the address in 42 to be placed in the Transfer Order.

In either case, the Transfer Order is unaltered and will place the first order read
from the tape in 44, unless a control combination to reset the Transfer Order occurs
first, as will usually be the case.

[Source: WWG 1951, pp. 159–60, with corrections from WWG 1957, pp. 218–20]

- 57 -

The Edsac Replica Project • The National Museum of Computing
Bletchley Park • Milton Keynes MK3 6EB • United Kingdom

	Title Page
	Contents
	Program Notation
	Code Letters for Initial Orders 2
	Specifications of Library Subroutines
	C7 Check function letters
	C10 Numerical Check
	D6 Division
	E2 Exponential
	M3 Print heading
	M20 Set parameters from dial during input of orders
	P1 Print positive number
	P6 Print short positive integer
	P7 Print positive integer
	P14 Print signed decimal
	R1 Input decimal fractions
	R2 Input of positive integer during input of orders
	R3 Input signed long decimal fraction
	R4 Input signed integer
	R9 Input positive integers during input of orders
	S2 Square root
	S3 Cube root
	T1 Cosine

	Demonstration Programs
	Arithmetic
	Cubes
	Reciprocals
	Hello World
	Print Primes
	Print Squares
	The TPK Algorithm

	Initial Orders 1
	Initial Orders 2

